Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals (original) (raw)
Waddington, C. The genetic control of wing development in Drosophila. J. Genet.41, 75–80 (1940). Article Google Scholar
Issa, J.P. CpG-island methylation in aging and cancer. Curr. Top. Microbiol. Immunol.249, 101–118 (2000). CASPubMed Google Scholar
Jähner, D. et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature298, 623–628 (1982). ArticlePubMed Google Scholar
Riggs, A.D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet.14, 9–25 (1975). ArticleCASPubMed Google Scholar
Holliday, R. & Pugh, J.E. DNA modification mechanisms and gene activity during development. Science187, 226–232 (1975). ArticleCASPubMed Google Scholar
Wolffe, A.P. & Matzke, M.A. Epigenetics: regulation through repression. Science286, 481–486 (1999). ArticleCASPubMed Google Scholar
Urnov, F.D. & Wolffe, A.P. Above and within the genome: epigenetics past and present. J. Mammary Gland Biol. Neoplasia6, 153–167 (2001). ArticleCASPubMed Google Scholar
Jones, P.A. & Takai, D. The role of DNA methylation in mammalian epigenetics. Science293, 1068–1070 (2001). ArticleCASPubMed Google Scholar
Ferguson-Smith, A.C. & Surani, M.A. Imprinting and the epigenetic asymmetry between parental genomes. Science293, 1086–1089 (2001). ArticleCASPubMed Google Scholar
Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet.2, 21–32 (2001). ArticleCASPubMed Google Scholar
Li, E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet.3, 662–673 (2002). ArticleCASPubMed Google Scholar
Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature403, 501–502 (2000). ArticleCASPubMed Google Scholar
Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol.10, 475–478 (2000). ArticleCASPubMed Google Scholar
Ehrlich, M. et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res.10, 2709–2721 (1982). ArticleCASPubMedPubMed Central Google Scholar
Jones, P. et al. De novo methylation of the MyoD1 CpG island during the establisment of immortal cell lines. Proc. Natl. Acad. Sci. USA87, 6117–6121 (1990). ArticleCASPubMedPubMed Central Google Scholar
Kawai, J. et al. Comparison of DNA methylation patterns among mouse cell lines by restriction landmark genomic scanning. Mol. Cell. Biol.14, 7421–7427 (1994). ArticleCASPubMedPubMed Central Google Scholar
Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). ArticleCASPubMed Google Scholar
Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development122, 3195–3205 (1996). CASPubMed Google Scholar
Stancheva, I. & Meehan, R.R. Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev.14, 313–327 (2000). CASPubMedPubMed Central Google Scholar
Howell, C. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell104, 829–838 (2001). ArticleCASPubMed Google Scholar
Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). ArticleCASPubMed Google Scholar
Lyko, F. et al. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nat. Genet.23, 363–366 (1999). ArticleCASPubMed Google Scholar
Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B. & Bestor, T.H. Dnmt3L and the establishment of maternal genomic imprints. Science294, 2536–2539 (2001). ArticleCASPubMed Google Scholar
Hata, K., Okano, M., Lei, H. & Li, E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development129, 1983–1993 (2002). CASPubMed Google Scholar
Okano, M., Xie, S. & Li, E. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res.26, 2536–2540 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lyko, F., Ramsahoye, B.H. & Jaenisch, R. DNA methylation in Drosophilamelanogaster. Nature408, 538–540 (2000). ArticleCASPubMed Google Scholar
Panning, B. & Jaenisch, R. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev.10, 1991–2002 (1996). ArticleCASPubMed Google Scholar
Stancheva, I., Hensey, C. & Meehan, R.R. Loss of the maintenance methyltransferase, xDnmt1, induces apoptosis in Xenopus embryos. EMBO J.20, 1963–1973 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jackson-Grusby, L. et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat. Genet.27, 31–39 (2001). ArticleCASPubMed Google Scholar
Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature416, 552–556 (2002). ArticleCASPubMed Google Scholar
Walsh, C.P., Chaillet, J.R. & Bestor, T.H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet.20, 116–117 (1998). ArticleCASPubMed Google Scholar
Fan, G. et al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J. Neurosci.21, 788–797 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol.196, 261–282 (1987). ArticleCASPubMed Google Scholar
Larsen, F., Gundersen, G., Lopez, R. & Prydz, H. CpG islands as gene markers in the human genome. Genomics13, 1095–1107 (1992). ArticleCASPubMed Google Scholar
Macleod, D., Ali, R.R. & Bird, A. An alternative promoter in the mouse major histocompatibility complex class II I-Aβ gene: implications for the origin of CpG islands. Mol. Cell. Biol.18, 4433–4443 (1998). ArticleCASPubMedPubMed Central Google Scholar
Adachi, N. & Lieber, M.R. Bidirectional gene organization: a common architectural feature of the human genome. Cell109, 807–809 (2002). ArticleCASPubMed Google Scholar
Voo, K.S., Carlone, D.L., Jacobsen, B.M., Flodin, A. & Skalnik, D.G. Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol. Cell. Biol.20, 2108–2121 (2000). ArticleCASPubMed Google Scholar
Lee, J.H., Voo, K.S. & Skalnik, D.G. Identification and characterization of the DNA binding domain of CpG-binding protein. J. Biol. Chem.276, 44669–44676 (2001). ArticleCASPubMed Google Scholar
Mohandas, T., Sparkes, R.S. & Shapiro, L.J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science211, 393–396 (1981). ArticleCASPubMed Google Scholar
Wolf, S.F., Jolly, D.J., Lunnen, K.D., Friedmann, T. & Migeon, B.R. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc. Natl. Acad. Sci. USA81, 2806–2810 (1984). ArticleCASPubMedPubMed Central Google Scholar
Riggs, A.D., Xiong, Z., Wang, L. & LeBon, J.M. Methylation dynamics, epigenetic fidelity and X chromosome structure. Novartis Found. Symp.214, 214–232 (1998). CASPubMed Google Scholar
Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature371, 435–438 (1994). ArticleCASPubMed Google Scholar
Macleod, D., Charlton, J., Mullins, J. & Bird, A.P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev.8, 2282–2292 (1994). ArticleCASPubMed Google Scholar
Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science295, 1079–1082 (2002). ArticleCASPubMed Google Scholar
Santoro, R., Li, J. & Grummt, I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat. Genet.32, 393–396 (2002). ArticleCASPubMed Google Scholar
Fuks, F., Burgers, W.A., Godin, N., Kasai, M. & Kouzarides, T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J.20, 2536–2544 (2001). ArticleCASPubMedPubMed Central Google Scholar
Bachman, K.E., Rountree, M.R. & Baylin, S.B. Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J. Biol. Chem.276, 32282–32287 (2001). ArticleCASPubMed Google Scholar
Tamaru, H. & Selker, E.U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414, 277–283 (2001). ArticleCASPubMed Google Scholar
Jackson, J.P., Lindroth, A.M., Cao, X. & Jacobsen, S.E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature416, 556–560 (2002). ArticleCASPubMed Google Scholar
Wolffe, A.P. & Guschin, D. Review: chromatin structural features and targets that regulate transcription. J. Struct. Biol.129, 102–122 (2000). ArticleCASPubMed Google Scholar
Grewal, S.I. & Elgin, S.C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev.12, 178–187 (2002). ArticleCASPubMed Google Scholar
Watt, F. & Molloy, P. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev.2, 1136–1143 (1988). ArticleCASPubMed Google Scholar
Bell, A.C., West, A.G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell98, 387–396 (1999). ArticleCASPubMed Google Scholar
Ohlsson, R., Renkawitz, R. & Lobanenkov, V. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet.17, 520–527 (2001). ArticleCASPubMed Google Scholar
Hark, A.T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature405, 486–489 (2000). ArticleCASPubMed Google Scholar
Tate, P.H. & Bird, A.P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev.3, 226–231 (1993). ArticleCASPubMed Google Scholar
Lewis, J.D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell69, 905–914 (1992). ArticleCASPubMed Google Scholar
Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol.18, 6538–6547 (1998). ArticleCASPubMedPubMed Central Google Scholar
Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev.15, 1613–1618 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nan, X., Meehan, R.R. & Bird, A. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res.21, 4886–4892 (1993). ArticleCASPubMedPubMed Central Google Scholar
Billard, L.M., Magdinier, F., Lenoir, G.M., Frappart, L. & Dante, R. MeCP2 and MBD2 expression during normal and pathological growth of the human mammary gland. Oncogene21, 2704–2712 (2002). ArticleCASPubMed Google Scholar
Rietveld, L.E., Caldenhoven, E. & Stunnenberg, H.G. In vivo repression of an erythroid-specific gene by distinct corepressor complexes. EMBO J.21, 1389–1397 (2002). ArticleCASPubMedPubMed Central Google Scholar
El-Osta, A., Kantharidis, P., Zalcberg, J.R. & Wolffe, A.P. Precipitous release of methyl-CpG binding protein 2 and histone deacetylase 1 from the methylated human multidrug resistance gene (MDR1) on activation. Mol. Cell. Biol.22, 1844–1857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Boyes, J. & Bird, A. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell64, 1123–1134 (1991). ArticleCASPubMed Google Scholar
Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet.19, 187–191 (1998). ArticleCASPubMed Google Scholar
Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). ArticleCASPubMed Google Scholar
Ng, H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet.23, 58–61 (1999). ArticleCASPubMed Google Scholar
Feng, Q. & Zhang, Y. The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev.15, 827–832 (2001). CASPubMedPubMed Central Google Scholar
Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V.A. & Bird, A. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev.15, 710–723 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13, 1924–1935 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hutchins, A.S. et al. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol. Cell10, 81–91 (2002). ArticleCASPubMed Google Scholar
Curradi, M., Izzo, A., Badaracco, G. & Landsberger, N. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol. Cell. Biol.22, 3157–3173 (2002). ArticleCASPubMedPubMed Central Google Scholar
Guy, J., Hendrich, B., Holmes, M., Martin, J.E. & Bird, A. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet.27, 322–326 (2001). ArticleCASPubMed Google Scholar
Amir, R.E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.23, 185–188 (1999). ArticleCASPubMed Google Scholar
Yusufzai, T.M. & Wolffe, A.P. Functional consequences of Rett syndrome mutations on human MeCP2. Nucleic Acids Res.28, 4172–4179 (2000). ArticleCASPubMedPubMed Central Google Scholar
Free, A. et al. DNA recognition by the methyl-CpG binding domain of MeCP2. J. Biol. Chem.276, 3353–3360 (2001). ArticleCASPubMed Google Scholar
Chen, R., Akbarian, S., Tudor, M. & Jaenisch, R. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat. Genet.27, 327–331 (2001). ArticleCASPubMed Google Scholar
Shahbazian, M. et al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron35, 243–254 (2002). ArticleCASPubMed Google Scholar
Tudor, M., Akbarian, S., Chen, R.Z. & Jaenisch, R. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc. Natl. Acad. Sci. USA99, 15536–15541 (2002). ArticleCASPubMedPubMed Central Google Scholar
Futscher, B.W. et al. Role for DNA methylation in the control of cell type specific maspin expression. Nat. Genet.31, 175–179 (2002). ArticleCASPubMed Google Scholar
Stancheva, I., El-Maarri, O., Walter, J., Niveleau, A. & Meehan, R.R. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Dev. Biol.243, 155–165 (2002). ArticleCASPubMed Google Scholar
Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet.2, 59–67 (2001). ArticleCASPubMed Google Scholar
Jones, B.K., Levorse, J.M. & Tilghman, S.M. Igf2 imprinting does not require its own DNA methylation or H19 RNA. Genes Dev.12, 2200–2207 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cohen, D.E. & Lee, J.T. X-chromosome inactivation and the search for chromosome-wide silencers. Curr. Opin. Genet. Dev.12, 219–224 (2002). ArticleCASPubMed Google Scholar
Lyle, R. et al. The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat. Genet.25, 19–21 (2000). ArticleCASPubMed Google Scholar
Chao, W., Huynh, K.D., Spencer, R.J., Davidow, L.S. & Lee, J.T. CTCF, a candidate trans-acting factor for X-inactivation choice. Science295, 345–347 (2002). ArticleCASPubMed Google Scholar
Brannan, C.I. & Bartolomei, M.S. Mechanisms of genomic imprinting. Curr. Opin. Genet. Dev.9, 164–170 (1999). ArticleCASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–385 (1993). ArticleCASPubMed Google Scholar
Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev.9, 2325–2334 (1995). ArticleCASPubMed Google Scholar
Lee, J. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development129, 1807–1817 (2002). ArticleCASPubMed Google Scholar
Hajkova, P. et al. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev.117, 15 (2002). ArticleCASPubMed Google Scholar
Tucker, K. et al. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of non-imprinted genes. Genes Dev.10, 1008–1020 (1996). ArticleCASPubMed Google Scholar
Keohane, A.M., O'Neill, L.P., Belyaev, N.D., Lavender, J.S. & Turner, B.M. X-inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol.180, 618–630 (1996). ArticleCASPubMed Google Scholar
Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell5, 695–705 (2000). ArticleCASPubMed Google Scholar
Csankovszki, G., Nagy, A. & Jaenisch, R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol.153, 773–784 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rideout, W.M., Eggan, K. & Jaenisch, R. Nuclear cloning and epigenetic reprogramming of the genome. Science293, 1093–1098 (2001). ArticleCASPubMed Google Scholar
Young, L.E., Sinclair, K.D. & Wilmut, I. Large offspring syndrome in cattle and sheep. Rev. Reprod.3, 155–163 (1998). ArticleCASPubMed Google Scholar
Ogonuki, N. et al. Early death of mice cloned from somatic cells. Nat. Genet.30, 253–254 (2002). ArticleCASPubMed Google Scholar
Tamashiro, K.L. et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nat. Med.8, 262–267 (2002). ArticleCASPubMed Google Scholar
Hochedlinger, K. & Jaenisch, R. Nuclear transplantation: lessons from frogs and mice. Curr. Opin. Cell Biol.14, 741–748 (2002). ArticleCASPubMed Google Scholar
Dean, W. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA98, 13734–13738 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kang, Y. et al. Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet.28, 173–177 (2001). ArticleCASPubMed Google Scholar
Bourc'his, D. et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol.11, 1542–1546 (2001). ArticleCASPubMed Google Scholar
Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev.16, 1209–1219 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bortvin, A. et al. Incomplete reactivation of _Oct4_-related gene in mouse embryos cloned from somatic nuclei. Development (in the press).
Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell95, 379–391 (1998). ArticleCASPubMed Google Scholar
Humpherys, D. et al. Epigenetic instability in ES cells and cloned mice. Science293, 95–97 (2001). ArticleCASPubMed Google Scholar
Humpherys, D. et al. Abnormal gene expression in cloned mice derived from ES cell and cumulus cell nuclei. Proc. Natl. Acad. Sci. USA99, 12889–12894 (2002). ArticleCASPubMedPubMed Central Google Scholar
Inoue, K. et al. Faithful expression of imprinted genes in cloned mice. Science295, 297 (2002). ArticleCASPubMed Google Scholar
Eggan, K. et al. X-chromosome inactivation in cloned mouse embryos. Science290, 1578–1581 (2000). ArticleCASPubMed Google Scholar
Lanza, R. et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science288, 665–669 (2000). ArticleCASPubMed Google Scholar
Betts, D. et al. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA98, 1077–1082 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rideout, W.M. et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat. Genet.24, 109–110 (2000). ArticleCASPubMed Google Scholar
Wakayama, T. & Yanagimachi, R. Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev.58, 376–383 (2001). ArticleCASPubMed Google Scholar
Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA98, 6209–6214 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature415, 1035–1038 (2002). ArticleCASPubMed Google Scholar
Di Berardino, M.A. Genetic stability and modulation of metazoan nuclei transplanted into eggs and oocytes. Differentiation17, 17–30 (1980). ArticleCAS Google Scholar
Gurdon, J.B. Genetic reprogramming following nuclear transplantation in Amphibia. Semin. Cell Dev. Biol.10, 239–243 (1999). ArticleCASPubMed Google Scholar
Jaenisch, R. & Wilmut, I. Developmental biology. Don't clone humans! Science291, 2552 (2001). ArticleCASPubMed Google Scholar
Rideout, W.M. 3rd, Hochedlinger, K., Kyba, M., Daley, G.Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell109, 17–27 (2002). ArticleCASPubMed Google Scholar
Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3, 415–428 (2002). ArticleCASPubMed Google Scholar
Esteller, M. & Herman, J.G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol.196, 1–7 (2002). ArticleCASPubMed Google Scholar
Feinberg, A.P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301, 89–92 (1983). ArticleCASPubMed Google Scholar
Xu, G.-L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402, 187–191 (1999). ArticleCASPubMed Google Scholar
Ehrlich, M. et al. High frequencies of ICF syndrome-like pericentromeric heterochromatin decondensation and breakage in chromosome 1 in a chorionic villus sample. J. Med. Genet.38, 882–884 (2001). ArticleCASPubMedPubMed Central Google Scholar
Chen, R.Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature395, 89–93 (1998). ArticleCASPubMed Google Scholar
Chan, M.F. et al. Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells. Mol. Cell. Biol.21, 7587–7600 (2001). ArticleCASPubMedPubMed Central Google Scholar
Turker, M.S. Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene21, 5388–5393 (2002). ArticleCASPubMed Google Scholar
Biniszkiewicz, D. et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell. Biol.22, 2124–2135 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sheldon, C.C. et al. The control of flowering by vernalization. Curr. Opin. Plant Biol.3, 418–422 (2000). ArticleCASPubMed Google Scholar
Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. & Dennis, E.S. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. USA97, 3753–3758 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sheldon, C.C. et al. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell11, 445–458 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gendall, A.R., Levy, Y.Y., Wilson, A. & Dean, C. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell107, 525–535 (2001). ArticleCASPubMed Google Scholar
Brock, H.W. & van Lohuizen, M. The Polycomb group—no longer an exclusive club? Curr. Opin. Genet. Dev.11, 175–181 (2001). ArticleCASPubMed Google Scholar
Wilson, V.L. & Jones, P.A. DNA methylation decreases in aging but not in immortal cells. Science220, 1055–1057 (1983). ArticleCASPubMed Google Scholar
Mays-Hoopes, L., Chao, W., Butcher, H.C. & Huang, R.C. Decreased methylation of the major mouse long interspersed repeated DNA during aging and in myeloma cells. Dev. Genet.7, 65–73 (1986). ArticleCASPubMed Google Scholar
Wilson, V.L., Smith, R.A., Ma, S. & Cutler, R.G. Genomic 5-methyldeoxycytidine decreases with age. J. Biol. Chem.262, 9948–9951 (1987). CASPubMed Google Scholar
Bestor, T.H. & Tycko, B. Creation of genomic methylation patterns. Nat. Genet.12, 363–367 (1996). ArticleCASPubMed Google Scholar
Barbot, W., Dupressoir, A., Lazar, V. & Heidmann, T. Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Res.30, 2365–2373 (2002). ArticleCASPubMedPubMed Central Google Scholar
Issa, J.P. et al. Methylation of the oestrogen receptor CpG island links aging and neoplasia in human colon. Nat. Genet.7, 536–540 (1994). ArticleCASPubMed Google Scholar
Toyota, M. & Issa, J.P. CpG island methylator phenotypes in aging and cancer. Semin. Cancer Biol.9, 349–357 (1999). ArticleCASPubMed Google Scholar
Van Den Veyver, I.B. Genetic effects of methylation diets. Annu. Rev. Nutr.22, 255–282 (2002). ArticleCASPubMed Google Scholar
Giovannucci, E. et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J. Natl. Cancer Inst.85, 875–884 (1993). ArticleCASPubMed Google Scholar
Blount, B.C. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl. Acad. Sci. USA94, 3290–3295 (1997). ArticleCASPubMedPubMed Central Google Scholar
Jacob, R.A. The role of micronutrients in DNA synthesis and maintenance. Adv. Exp. Med. Biol.472, 101–113 (1999). ArticleCASPubMed Google Scholar
Group, M.V.S.R. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet338, 131–137 (1991). Article Google Scholar
Friso, S. et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. USA99, 5606–5611 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dizik, M., Christman, J.K. & Wainfan, E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis12, 1307–1312 (1991). ArticleCASPubMed Google Scholar
Poirier, L., Zapisek, W. & Lyon-Cook, B. Physiological methylation in carcinogenesis. In Mutation and the Environment Part D, 97–112 (Willey-Liss, 1990). Google Scholar
Wainfan, E. & Poirier, L.A. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res.52, 2071s–2077s (1992). CASPubMed Google Scholar
Hoal-van Helden, E.G. & van Helden, P.D. Age-related methylation changes in DNA may reflect the proliferative potential of organs. Mutat. Res.219, 263–266 (1989). ArticleCASPubMed Google Scholar
Christman, J.K., Sheikhnejad, G., Dizik, M., Abileah, S. & Wainfan, E. Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis14, 551–557 (1993). ArticleCASPubMed Google Scholar
Michaud, E.J. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev.8, 1463–1472 (1994). ArticleCASPubMed Google Scholar
Millar, S.E., Miller, M.W., Stevens, M.E. & Barsh, G.S. Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated. Development121, 3223–3232 (1995). CASPubMed Google Scholar
Siracusa, L.D. et al. Hypervariable yellow (Ahvy), a new murine agouti mutation: Ahvy displays the largest variation in coat color phenotypes of all known agouti alleles. J. Hered.86, 121–128 (1995). ArticleCASPubMed Google Scholar
Wolff, G.L., Kodell, R.L., Moore, S.R. & Cooney, C.A. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb J.12, 949–957 (1998). ArticleCASPubMed Google Scholar
Cooney, C.A., Dave, A.A. & Wolff, G.L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr.132, 2393S–2400S (2002). ArticleCASPubMed Google Scholar
Morgan, H.D., Sutherland, H.G.E., Martin, D.I.K. & Whitelaw, E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet.23, 314–318 (1999). ArticleCASPubMed Google Scholar
Petronis, A. Human morbid genetics revisited: relevance of epigenetics. Trends Genet.17, 142–146 (2001). ArticleCASPubMed Google Scholar
Tremolizzo, L. et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. USA99, 17095–17100 (2002). ArticleCASPubMedPubMed Central Google Scholar
Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res.30, e21 (2002). ArticlePubMedPubMed Central Google Scholar
Santini, V., Kantarjian, H.M. & Issa, J.P. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med.134, 573–586 (2001). ArticleCASPubMed Google Scholar
Juttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl. Acad. Sci. USA91, 11797–11801 (1994). ArticleCASPubMedPubMed Central Google Scholar
Cameron, E.E., Bachman, K.E., Myohanen, S., Herman, J.G. & Baylin, S.B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet21, 103–107 (1999). ArticleCASPubMed Google Scholar
Jaenisch, R., Schnieke, A. & Harbers, K. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA82, 1451–1455 (1985). ArticleCASPubMedPubMed Central Google Scholar
Millar, C.B. et al. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science297, 403–405 (2002). ArticleCASPubMed Google Scholar
Lagger, G. et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J.21, 2672–2681 (2002). ArticleCASPubMedPubMed Central Google Scholar
Peters, A.H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323–337 (2001). ArticleCASPubMed Google Scholar
Baylin, S.B. & Herman, J.G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet.16, 168–174 (2000). ArticleCASPubMed Google Scholar
Laird, P.W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81, 197–205 (1995). ArticleCASPubMed Google Scholar
Fuks, F. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem. (2002); advanced online publication 9 November 2002 (doi: 10.1074/jbc.M210256200).
Argeson, A., Nelson, K. & Siracusa, L. Molecular basis of the pleiotropic phenotype of mice carrying the hypervariable yellow (Ahvy) mutation at the agouti locus. Genetics142, 557–567 (1996). CASPubMedPubMed Central Google Scholar