- Stambolic, V. et al. Negative regulation of PKB/AKT-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).
CAS PubMed Google Scholar
- Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003).
CAS PubMed Google Scholar
- Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).
CAS PubMed Google Scholar
- Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).
CAS PubMed Google Scholar
- Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15, 356–362 (1997).
CAS PubMed Google Scholar
- Shi, W. et al. Dysregulated PTEN–PKB and negative receptor status in human breast cancer. Int. J. Cancer 104, 195–203 (2003).
CAS PubMed Google Scholar
- Bellacosa, A., Testa, J. R., Moore, R. & Larue, L. A portrait of AKT kinases: human cancer and animal models depict a family with strong individualities. Cancer Biol. Ther. 3, 268–275 (2004).
CAS PubMed Google Scholar
- Garofalo, R. S. et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB β. J. Clin. Invest. 112, 197–208 (2003).
CAS PubMed PubMed Central Google Scholar
- Stiles, B. et al. Essential role of AKT-1/protein kinase Bα in PTEN-controlled tumorigenesis. Mol. Cell. Biol. 22, 3842–3851 (2002).
CAS PubMed PubMed Central Google Scholar
- Tschopp, O. et al. Essential role of protein kinase B γ (PKB γ/Akt3) in postnatal brain development but not in glucose homeostasis. Development 132, 2943–2954 (2005).
CAS PubMed Google Scholar
- Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27Kip1 by PKB/Akt-mediated phosphorylation in breast cancer. Nature Med. 8, 1136–1144 (2002).
CAS PubMed Google Scholar
- Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nature Med. 8, 1153–1160 (2002).
CAS PubMed Google Scholar
- Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27Kip1 at threonine 157 and modulation of its cellular localization. Nature Med. 8, 1145–1152 (2002).
CAS PubMed Google Scholar
- Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).
CAS PubMed Google Scholar
- Ramaswamy, S., Nakamura, N., Sansal, I., Bergeron, L. & Sellers, W. R. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2, 81–91 (2002).
CAS PubMed Google Scholar
- Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446 (2005).
CAS PubMed PubMed Central Google Scholar
- Li, Y., Corradetti, M. N., Inoki, K. & Guan, K. L. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem. Sci. 29, 32–38 (2004).
PubMed Google Scholar
- Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).
CAS PubMed Google Scholar
- Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175 (2002).
CAS PubMed Google Scholar
- Kim, D. H. et al. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell 11, 895–904 (2003).
CAS PubMed Google Scholar
- Fingar, D. C., Salama, S., Tsou, C., Harlow, E. & Blenis, J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 16, 1472–1487 (2002).
CAS PubMed PubMed Central Google Scholar
- Miron, M., Lasko, P. & Sonenberg, N. Signaling from Akt to FRAP/TOR targets both 4E-BP and S6K in Drosophila melanogaster. Mol. Cell. Biol. 23, 9117–9126 (2003).
CAS PubMed PubMed Central Google Scholar
- Shima, H. et al. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 17, 6649–6659 (1998).
CAS PubMed PubMed Central Google Scholar
- Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).
CAS PubMed Google Scholar
- Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol. 6, 1122–1128 (2004).
CAS PubMed Google Scholar
- Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).
CAS PubMed Google Scholar
- Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004).
CAS PubMed Google Scholar
- Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005). Identifies TOR as the kinase responsible for phosphorylating and activating PKB.
CAS PubMed Google Scholar
- Yeung, R. S. Multiple roles of the tuberous sclerosis complex genes. Genes Chromosomes Cancer 38, 368–375 (2003).
CAS PubMed Google Scholar
- Chan, S. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br. J. Cancer 91, 1420–1424 (2004).
CAS PubMed PubMed Central Google Scholar
- Atkins, M. B. et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22, 909–918 (2004).
CAS PubMed Google Scholar
- Chan, S. et al. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J. Clin. Oncol. 23, 5314–5322 (2005).
CAS PubMed Google Scholar
- Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten +/− mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001). One of the first demonstrations that rapamycin, a pharmacological inhibitor of TOR, can inhibit tumour growth in Pten -deficient mice.
CAS PubMed Google Scholar
- Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004). Shows that both tumour formation and the chemoresistance found in PKB-overexpressing tumour models depend on the 4EBP target eIF4E.
CAS PubMed Google Scholar
- Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).
CAS Google Scholar
- Kwiatkowski, D. J. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol. Ther. 2, 471–476 (2003).
CAS PubMed Google Scholar
- Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193 (2005).
CAS PubMed Google Scholar
- Johannessen, C. M. et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl Acad. Sci. USA 102, 8573–8578 (2005).
CAS PubMed Google Scholar
- Cichowski, K., Santiago, S., Jardim, M., Johnson, B. W. & Jacks, T. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 17, 449–454 (2003).
CAS PubMed PubMed Central Google Scholar
- Dong, J. & Pan, D. Tsc2 is not a critical target of Akt during normal Drosophila development. Genes Dev. 18, 2479–2484 (2004).
CAS PubMed PubMed Central Google Scholar
- Ma, L. et al. Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev. 19, 1779–1786 (2005). Identifies the ERK phosphorylation sites on TSC2, which indicates an important connection between the Ras and TOR pathways.
CAS PubMed PubMed Central Google Scholar
- Manning, B. D. et al. Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 19, 1773–1778 (2005).
CAS PubMed PubMed Central Google Scholar
- Deininger, M., Buchdunger, E. & Druker, B. J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640–2653 (2005).
CAS PubMed Google Scholar
- Simpson, L. et al. PTEN expression causes feedback upregulation of insulin receptor substrate 2. Mol. Cell. Biol. 21, 3947–3958 (2001).
CAS PubMed PubMed Central Google Scholar
- Harrington, L. S. et al. The TSC1–2 tumor suppressor controls insulin–PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).
CAS PubMed PubMed Central Google Scholar
- Gual, P., Gremeaux, T., Gonzalez, T., Le Marchand-Brustel, Y. & Tanti, J. F. MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 46, 1532–1542 (2003).
CAS PubMed Google Scholar
- Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).
CAS PubMed Google Scholar
- Marsh, D. J. et al. Mutation spectrum and genotype–phenotype analyses in Cowden disease and Bannayan–Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7, 507–515 (1998).
CAS PubMed Google Scholar
- Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).
CAS PubMed Google Scholar
- Tsao, H., Zhang, X., Fowlkes, K. & Haluska, F. G. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 60, 1800–1804 (2000).
CAS PubMed Google Scholar
- Ikeda, T. et al. Anticorresponding mutations of the KRAS and PTEN genes in human endometrial cancer. Oncol. Rep. 7, 567–570 (2000).
CAS PubMed Google Scholar
- Liu, W., James, C. D., Frederick, L., Alderete, B. E. & Jenkins, R. B. PTEN/MMAC1 mutations and EGFR amplification in glioblastomas. Cancer Res. 57, 5254–5257 (1997).
CAS PubMed Google Scholar
- Simpson, L. & Parsons, R. PTEN: life as a tumor suppressor. Exp. Cell Res. 264, 29–41 (2001).
CAS PubMed Google Scholar
- Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).
CAS Google Scholar
- Mao, J. H. et al. Mutually exclusive mutations of the Pten and ras pathways in skin tumor progression. Genes Dev. 18, 1800–1805 (2004).
CAS PubMed PubMed Central Google Scholar
- Sattler, M. et al. Critical role for Gab2 in transformation by BCR–ABL. Cancer Cell 1, 479–492 (2002).
CAS PubMed Google Scholar
- Cheng, A. M. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803 (1998).
CAS PubMed Google Scholar
- Tari, A. M. & Lopez-Berestein, G. GRB2: a pivotal protein in signal transduction. Semin. Oncol. 28, 142–147 (2001).
CAS PubMed Google Scholar
- Leung, R. K. & Whittaker, P. A. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. 107, 222–239 (2005).
CAS PubMed Google Scholar
- Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325 (2001).
CAS PubMed Google Scholar
- Feng, Z., Zhang, H., Levine, A. J. & Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl Acad. Sci. USA 102, 8204–8209 (2005).
CAS PubMed Google Scholar
- Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).
CAS PubMed Google Scholar
- Singh, B. et al. p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. 16, 984–993 (2002).
CAS PubMed PubMed Central Google Scholar
- Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).
CAS PubMed Google Scholar
- Jin, S. & Levine, A. J. The p53 functional circuit. J. Cell Sci. 114, 4139–4140 (2001).
CAS Google Scholar
- Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).
CAS PubMed Google Scholar
- Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005). Indicates that senescence induced by Pten deletion prevents incipient tumours from progressing to a malignant state. Loss of p53 prevents this senescence, thereby allowing prostate tumours to form in Pten -null mice.
CAS PubMed PubMed Central Google Scholar
- Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).
CAS PubMed Google Scholar
- Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).
CAS PubMed Google Scholar
- Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).
CAS PubMed Google Scholar
- You, H. et al. p53-dependent inhibition of FKHRL1 in response to DNA damage through protein kinase SGK1. Proc. Natl Acad. Sci. USA 101, 14057–14062 (2004).
CAS PubMed Google Scholar
- You, H. & Mak, T. W. Crosstalk between p53 and FOXO transcription factors. Cell Cycle 4, 37–38 (2005).
CAS PubMed Google Scholar
- David, O. et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin. Cancer Res. 10, 6865–6871 (2004).
CAS PubMed Google Scholar
- Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7, 263–273 (2005).
CAS PubMed Google Scholar
- Johnson, B. E. & Janne, P. A. Selecting patients for epidermal growth factor receptor inhibitor treatment: a FISH story or a tale of mutations? J. Clin. Oncol. 23, 6813–6816 (2005).
CAS PubMed Google Scholar
- Takano, T. et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 23, 6829–6837 (2005).
CAS PubMed Google Scholar
- Eberhard, D. A. et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 23, 5900–5909 (2005).
CAS PubMed Google Scholar
- Bell, D. W. et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J. Clin. Oncol. 23, 8081–8092 (2005).
CAS PubMed Google Scholar
- Hirsch, F. R. et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J. Clin. Oncol. 23, 6838–6845 (2005).
CAS PubMed Google Scholar
- Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M. & Gogos, J. A. Convergent evidence for impaired AKT1–GSK3β signaling in schizophrenia. Nature Genet. 36, 131–137 (2004).
CAS PubMed Google Scholar
- White, M. F. Insulin signaling in health and disease. Science 302, 1710–1711 (2003).
CAS PubMed Google Scholar
- Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).
CAS PubMed Google Scholar
- Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).
CAS PubMed Google Scholar
- Domchek, S. M., Auger, K. R., Chatterjee, S., Burke, T. R. Jr & Shoelson, S. E. Inhibition of SH2 domain/phosphoprotein association by a nonhydrolyzable phosphonopeptide. Biochemistry 31, 9865–9870 (1992).
CAS PubMed Google Scholar
- Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).
CAS PubMed Google Scholar
- Ong, S. H. et al. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc. Natl Acad. Sci. USA 98, 6074–6079 (2001).
CAS PubMed Google Scholar
- Chan, T. O. et al. Small GTPases and tyrosine kinases coregulate a molecular switch in the phosphoinositide 3-kinase regulatory subunit. Cancer Cell 1, 181–191 (2002).
CAS PubMed Google Scholar
- Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292, 1728–1731 (2001).
CAS PubMed Google Scholar
- Stambolic, V., Ruel, L. & Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668 (1996).
CAS PubMed Google Scholar
- Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299, 256–259 (2003).
CAS PubMed Google Scholar
- Goldberg, M. S. et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45, 489–496 (2005).
CAS PubMed Google Scholar
- Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).
CAS PubMed Google Scholar
- Chen, L. et al. Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J. Biol. Chem. 280, 21418–21426 (2005).
CAS PubMed Google Scholar
- Stambolic, V. et al. High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten +/− mice. Cancer Res. 60, 3605–3611 (2000).
CAS PubMed Google Scholar
- Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C. & Pandolfi, P. P. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet. 27, 222–224 (2001).
CAS PubMed Google Scholar
- You, M. J. et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc. Natl Acad. Sci. USA 99, 1455–1460 (2002).
CAS PubMed Google Scholar
- Mao, J. H. et al. Genetic interactions between Pten and p53 in radiation-induced lymphoma development. Oncogene 22, 8379–8385 (2003).
CAS PubMed Google Scholar
- Freeman, D. J. et al. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and-independent mechanisms. Cancer Cell 3, 117–130 (2003).
CAS PubMed Google Scholar
- Abate-Shen, C. et al. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res. 63, 3886–3890 (2003).
CAS Google Scholar
- Xiao, A., Wu, H., Pandolfi, P. P., Louis, D. N. & Van Dyke, T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 1, 157–168 (2002).
CAS Google Scholar
- Wang, H. et al. DNA mismatch repair deficiency accelerates endometrial tumorigenesis in Pten heterozygous mice. Am. J. Pathol. 160, 1481–1486 (2002).
CAS PubMed PubMed Central Google Scholar
- Cully, M. et al. grb2 heterozygosity rescues embryonic lethality but not tumorigenesis in pten +/− mice. Proc. Natl Acad. Sci. USA 101, 15358–15363 (2004).
CAS PubMed Google Scholar
- Cully, M. et al. TACC1 promotes survival, transformation and mammary tumorigenesis. Cancer Res. 65 10363–10370 (2005).
CAS PubMed Google Scholar