How will HPV vaccines affect cervical cancer? (original) (raw)
Bosch, F. X., Lorincz, A., Munoz, N., Meijer, C. J. & Shah, K. V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol.55, 244–265 (2002). CASPubMedPubMed Central Google Scholar
zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev. Cancer2, 342–350 (2002). CAS Google Scholar
Clifford, G. M. et al. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet366, 991–998 (2005). CASPubMed Google Scholar
de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U. & zur Hausen, H. Classification of papillomaviruses. Virology324, 17–27 (2004). CASPubMed Google Scholar
Kurman, R. J., Malkasian, G. D. Jr, Sedlis, A. & Solomon, D. From Papanicolaou to Bethesda: the rationale for a new cervical cytologic classification. Obstet. Gynecol.77, 779–782 (1991). CASPubMed Google Scholar
Ho, G. Y., Bierman, R., Beardsley, L., Chang, C. J. & Burk, R. D. Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med.338, 423–428 (1998). CASPubMed Google Scholar
Trimble, C. L. et al. Spontaneous regression of high-grade cervical dysplasia: effects of human papillomavirus type and HLA phenotype. Clin. Cancer Res.11, 4717–4723 (2005). CASPubMedPubMed Central Google Scholar
Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer118, 3030–3044 (2006). CASPubMed Google Scholar
US Food and Drug Administration. Product approval information — licensing action. US Food and Drug Administration[online], (2006).
Koller, L. D. & Olson, C. Attempted transmission of warts from man, cattle, and horses and of deer fibroma, to selected hosts. J. Invest. Dermatol.58, 366–368 (1972). CASPubMed Google Scholar
Dvoretzky, I., Shober, R., Chattopadhyay, S. K. & Lowy, D. R. A quantitative in vitro focus assay for bovine papilloma virus. Virology103, 369–375 (1980). CASPubMed Google Scholar
Christensen, N. D. & Kreider, J. W. Antibody-mediated neutralization in vivo of infectious papillomaviruses. J. Virol.64, 3151–3156 (1990). CASPubMedPubMed Central Google Scholar
Bonnez, W., Rose, R. C. & Reichman, R. C. Antibody-mediated neutralization of human papillomavirus type 11 (HPV- 11) infection in the nude mouse: detection of HPV-11 mRNAs. J. Infect. Dis.165, 376–380 (1992). CASPubMed Google Scholar
Rose, R. C., Bonnez, W., Reichman, R. C. & Garcea, R. L. Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J. Virol.67, 1936–1944 (1993). CASPubMedPubMed Central Google Scholar
Bell, J. A. et al. A formalin-inactivated vaccine protects against mucosal papillomavirus infection: a canine model. Pathobiology62, 194–198 (1994). CASPubMed Google Scholar
Jarrett, W. F. et al. Studies on vaccination against papillomaviruses: a comparison of purified virus, tumour extract and transformed cells in prophylactic vaccination. Vet. Rec.126, 449–452 (1990). CASPubMed Google Scholar
Breitburd, F. et al. Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J. Virol.69, 3959–3963 (1995). Shows that the passive transfer of immune sera from a VLP-vaccinated animal protects a naïve animal from experimental papillomavirus challenge. The study also shows the conformational nature of protective epitopes, and that L2 is not required in VLPs for protection. CASPubMedPubMed Central Google Scholar
Lin, Y. L., Borenstein, L. A., Ahmed, R. & Wettstein, F. O. Cottontail rabbit papillomavirus L1 protein-based vaccines: protection is achieved only with a full-length, nondenatured product. J. Virol.67, 4154–4162 (1993). CASPubMedPubMed Central Google Scholar
Hagensee, M. E., Yaegashi, N. & Galloway, D. A. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol.67, 315–322 (1993). CASPubMedPubMed Central Google Scholar
Heino, P., Dillner, J. & Schwartz, S. Human papillomavirus type 16 capsid proteins produced from recombinant Semliki Forest virus assemble into virus-like particles. Virology214, 349–359 (1995). CASPubMed Google Scholar
Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R. & Schiller, J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl Acad. Sci. USA89, 12180–12184 (1992). CASPubMed Google Scholar
Rose, R. C., Reichman, R. C. & Bonnez, W. Human papillomavirus (HPV) type 11 recombinant virus-like particles induce the formation of neutralizing antibodies and detect HPV-specific antibodies in human sera. J. Gen. Virol.75, 2075–2079 (1994). PubMed Google Scholar
Sasagawa, T. et al. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe. Virology206, 126–135 (1995). CASPubMed Google Scholar
Nardelli-Haefliger, D. et al. Human papillomavirus type 16 virus-like particles expressed in attenuated Salmonella typhimurium elicit mucosal and systemic neutralizing antibodies in mice. Infect. Immun.65, 3328–3336 (1997). References 20–25 show the production of HPV VLPs by the recombinant production of L1 protein in various expression systems. CASPubMedPubMed Central Google Scholar
Ghim, S. J., Jenson, A. B. & Schlegel, R. HPV-1 L1 protein expressed in cos cells displays conformational epitopes found on intact virions. Virology190, 548–552 (1992). CASPubMed Google Scholar
Suzich, J. A. et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl Acad. Sci. USA92, 11553–11557 (1995). Shows that the passive transfer of immune sera from a VLP-vaccinated animal protects a naïve dog from experimental papillomavirus challenge. CASPubMed Google Scholar
Kirnbauer, R. et al. Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology219, 37–44 (1996). CASPubMed Google Scholar
Christensen, N. D., Reed, C. A., Cladel, N. M., Han, R. & Kreider, J. W. Immunization with viruslike particles induces long-term protection of rabbits against challenge with cottontail rabbit papillomavirus. J. Virol.70, 960–965 (1996). References 27–29 show that vaccination with VLPs protects animals from experimental challenge with homologous-type animal papillomavirus. CASPubMedPubMed Central Google Scholar
Nardelli-Haefliger, D. et al. Mucosal but not parenteral immunization with purified human papillomavirus type 16 virus-like particles induces neutralizing titers of antibodies throughout the estrous cycle of mice. J. Virol.73, 9609–9613 (1999). CASPubMedPubMed Central Google Scholar
Nardelli-Haefliger, D. et al. Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J. Natl Cancer Inst.95, 1128–1137 (2003). PubMed Google Scholar
Harro, C. D. et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J. Natl Cancer Inst.93, 284–292 (2001). CASPubMed Google Scholar
Evans, T. G. et al. A Phase 1 study of a recombinant viruslike particle vaccine against human papillomavirus type 11 in healthy adult volunteers. J. Infect. Dis.183, 1485–1493 (2001). CASPubMed Google Scholar
Ault, K. A. et al. A phase I study to evaluate a human papillomavirus (HPV) type 18 L1 VLP vaccine. Vaccine22, 3004–3007 (2004). CASPubMed Google Scholar
Brown, D. R. et al. Early assessment of the efficacy of a human papillomavirus type 16 L1 virus-like particle vaccine. Vaccine22, 2936–2942 (2004). CASPubMed Google Scholar
Fife, K. H. et al. Dose-ranging studies of the safety and immunogenicity of human papillomavirus Type 11 and Type 16 virus-like particle candidate vaccines in young healthy women. Vaccine22, 2943–2952 (2004). CASPubMed Google Scholar
Koutsky, L. A. et al. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med.347, 1645–1651 (2002). A landmark trial showing that vaccination with HPV16 L1 VLPs protects against the natural acquisition of persistent HPV16 infection and HPV16-associated CIN. CASPubMed Google Scholar
Harper, D. M. et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet364, 1757–1765 (2004). CASPubMed Google Scholar
Villa, L. L. et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol.6, 271–278 (2005). A trial that shows the efficacy of a multivalent VLP vaccine comprising L1 VLPs of HPV6, 11, 16 and 18 for protection against HPV16 and 18-related CIN and protection against external genital warts. PubMed Google Scholar
Harper, D. M. et al. Sustained efficacy up to 4. 5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet367, 1247–1255 (2006). A trial that shows cross-protection against homologous type HPV16 and 18-related SIL, and SIL associated with very closely related HPV types (HPV31 and 45) after vaccination with HPV16 and HPV18 L1 VLPs. CASPubMed Google Scholar
Mao, C. et al. Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithelial neoplasia: a randomized controlled trial. Obstet. Gynecol.107, 18–27 (2006). PubMed Google Scholar
Robbins, J. B., Schneerson, R. & Szu, S. C. Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J. Infect. Dis.171, 1387–1398 (1995). CASPubMed Google Scholar
Roden, R. B., Kirnbauer, R., Jenson, A. B., Lowy, D. R. & Schiller, J. T. Interaction of papillomaviruses with the cell surface. J. Virol.68, 7260–7266 (1994). CASPubMedPubMed Central Google Scholar
Roden, R. B. et al. Neutralization of bovine papillomavirus by antibodies to L1 and L2 capsid proteins. J. Virol.68, 7570–7574 (1994). CASPubMedPubMed Central Google Scholar
Chipperfield, E. J. & Evans, B. A. Effect of local infection and oral contraception on immunoglobulin levels in cervical mucus. Infect. Immun.11, 215–221 (1975). CASPubMedPubMed Central Google Scholar
Roden, R. B. et al. In vitro generation and type-specific neutralization of a human papillomavirus type 16 virion pseudotype. J. Virol.70, 5875–5883 (1996). CASPubMedPubMed Central Google Scholar
Munoz, N. et al. Against which human papillomavirus types shall we vaccinate and screen? The international perspective. Int. J. Cancer111, 278–285 (2004). CASPubMed Google Scholar
Christensen, N. D. et al. Human papillomavirus types 6 and 11 have antigenically distinct strongly immunogenic conformationally dependent neutralizing epitopes. Virology205, 329–335 (1994). CASPubMed Google Scholar
Roden, R. B. et al. Assessment of the serological relatedness of genital human papillomaviruses by hemagglutination inhibition. J. Virol.70, 3298–3301 (1996). CASPubMedPubMed Central Google Scholar
White, W. I. et al. In vitro infection and type-restricted antibody-mediated neutralization of authentic human papillomavirus type 16. J. Virol.72, 959–964 (1998). CASPubMedPubMed Central Google Scholar
Christensen, N. D., Kreider, J. W., Kan, N. C. & DiAngelo, S. L. The open reading frame L2 of cottontail rabbit papillomavirus contains antibody-inducing neutralizing epitopes. Virology181, 572–579 (1991). CASPubMed Google Scholar
Campo, M. S. et al. Prophylactic and therapeutic vaccination against a mucosal papillomavirus. J. Gen. Virol.74, 945–53 (1993). CASPubMed Google Scholar
Lin, Y. L., Borenstein, L. A., Selvakumar, R., Ahmed, R. & Wettstein, F. O. Effective vaccination against papilloma development by immunization with L1 or L2 structural protein of cottontail rabbit papillomavirus. Virology187, 612–619 (1992). CASPubMed Google Scholar
Embers, M. E., Budgeon, L. R., Pickel, M. & Christensen, N. D. Protective immunity to rabbit oral and cutaneous papillomaviruses by immunization with short peptides of l2, the minor capsid protein. J. Virol.76, 9798–9805 (2002). References 51–54 show that vaccination with L2 and its peptides protects animals from experimental papillomavirus infection. CASPubMedPubMed Central Google Scholar
Roden, R. B. et al. Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology270, 254–257 (2000). CASPubMed Google Scholar
US Food and Drug Administration. CBER-Quadrivalent Human Papillomavirus (Types 6, 11, 16, 18) Recombinant Vaccine, GARDASIL Labeling. US Food and Drug Administration[online], (2006).
Barnabas, R. V. et al. Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses. PLoS Med.3, e138 (2006). PubMedPubMed Central Google Scholar
Kashima, H. K., Mounts, P. & Shah, K. Recurrent respiratory papillomatosis. Obstet. Gynecol. Clin. North Am.23, 699–706 (1996). CASPubMed Google Scholar
De Bruijn, M. L. et al. L1-specific protection from tumor challenge elicited by HPV16 virus- like particles. Virology250, 371–376 (1998). CASPubMed Google Scholar
Yang, R. et al. Papillomavirus capsid mutation to escape dendritic cell-dependent innate immunity in cervical cancer. J. Virol.79, 6741–6750 (2005). CASPubMedPubMed Central Google Scholar
Zhang, L. F. et al. HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine18, 1051–1058 (2000). CASPubMed Google Scholar
Koshiol, J. E. et al. Time to clearance of human papillomavirus infection by type and human immunodeficiency virus serostatus. Int. J. Cancer119, 1623–1629 (2006). CASPubMed Google Scholar
Palefsky, J. Human papillomavirus-associated malignancies in HIV-positive men and women. Curr. Opin. Oncol.7, 437–441 (1995). CASPubMed Google Scholar
Berry, J. M. & Palefsky, J. M. A review of human papillomavirus vaccines: from basic science to clinical trials. Front. Biosci.8, s333–s345 (2003). CASPubMed Google Scholar
Pardoll, D. M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol.2, 227–238 (2002). CAS Google Scholar
Muller, M. et al. Chimeric papillomavirus-like particles. Virology234, 93–111 (1997). CASPubMed Google Scholar
Greenstone, H. L. et al. Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl Acad. Sci. USA95, 1800–1805 (1998). CASPubMed Google Scholar
Freyschmidt, E. J., Alonso, A., Hartmann, G. & Gissmann, L. Activation of dendritic cells and induction of T cell responses by HPV 16 L1/E7 chimeric virus-like particles are enhanced by CpG ODN or sorbitol. Antivir. Ther.9, 479–489 (2004). CASPubMed Google Scholar
de Jong, A. et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine20, 3456–3464 (2002). CASPubMed Google Scholar
Smyth, L. J. et al. Immunological responses in women with human papillomavirus type 16 (HPV-16)-associated anogenital intraepithelial neoplasia induced by heterologous prime-boost HPV-16 oncogene vaccination. Clin. Cancer Res.10, 2954–2961 (2004). CASPubMed Google Scholar
McLaughlin-Drubin, M. E. & Meyers, C. Evidence for the coexistence of two genital HPV types within the same host cell in vitro. Virology321, 173–180 (2004). CASPubMed Google Scholar
Liaw, K. L. et al. A prospective study of human papillomavirus (HPV) type 16 DNA detection by polymerase chain reaction and its association with acquisition and persistence of other HPV types. J. Infect. Dis.183, 8–15 (2001). CASPubMed Google Scholar
Silins, I. et al. Serological evidence for protection by human papillomavirus (HPV) type 6 infection against HPV type 16 cervical carcinogenesis. J. Gen. Virol.80, 2931–2936 (1999). CASPubMed Google Scholar
Chow, L. T. & Broker, T. R. Papillomavirus DNA replication. Intervirology37, 150–158 (1994). CASPubMed Google Scholar
Roden, R. B. et al. Characterization of a human papillomavirus type 16 variant-dependent neutralizing epitope. J. Virol.71, 6247–6252 (1997). CASPubMedPubMed Central Google Scholar
White, W. I. et al. Characterization of a major neutralizing epitope on human papillomavirus type 16 L1. J. Virol.73, 4882–4889 (1999). CASPubMedPubMed Central Google Scholar
Pastrana, D. V., Vass, W. C., Lowy, D. R. & Schiller, J. T. NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16. Virology279, 361–369. (2001). CASPubMed Google Scholar
Goldie, S. J. et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J. Natl Cancer Inst.96, 604–615 (2004). PubMed Google Scholar
Schiffman, M. & Castle, P. E. The promise of global cervical-cancer prevention. N. Engl J. Med.353, 2101–214 (2005). CASPubMed Google Scholar
Li, M. et al. Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly. J. Virol.71, 2988–2995 (1997). CASPubMedPubMed Central Google Scholar
Rose, R. C. et al. Human papillomavirus type 11 recombinant L1 capsomeres induce virus- neutralizing antibodies. J. Virol.72, 6151–6154 (1998). CASPubMedPubMed Central Google Scholar
Chen, X. S., Garcea, R. L., Goldberg, I., Casini, G. & Harrison, S. C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell.5, 557–567 (2000). CASPubMed Google Scholar
Fligge, C., Giroglou, T., Streeck, R. E. & Sapp, M. Induction of type-specific neutralizing antibodies by capsomeres of human papillomavirus type 33. Virology283, 353–357 (2001). CASPubMed Google Scholar
Yuan, H. et al. Immunization with a pentameric L1 fusion protein protects against papillomavirus infection. J. Virol.75, 7848–7853 (2001). CASPubMedPubMed Central Google Scholar
Nardelli-Haefliger, D. et al. Immune responses induced by lower airway mucosal immunisation with a human papillomavirus type 16 virus-like particle vaccine. Vaccine23, 3634–3641 (2005). CASPubMed Google Scholar
Rechtsteiner, G., Warger, T., Osterloh, P., Schild, H. & Radsak, M. P. Cutting edge: priming of CTL by transcutaneous peptide immunization with imiquimod. J. Immunol.174, 2476–2480 (2005). CASPubMed Google Scholar
Govan, V. A., Christensen, N. D., Berkower, C., Jacobs, W. R., Jr. & Williamson, A. L. Immunisation with recombinant BCG expressing the cottontail rabbit papillomavirus (CRPV) L1 gene provides protection from CRPV challenge. Vaccine24, 2087–2093 (2006). CASPubMed Google Scholar
Reuter, J. D. et al. Intranasal vaccination with a recombinant vesicular stomatitis virus expressing cottontail rabbit papillomavirus L1 protein provides complete protection against papillomavirus-induced disease. J. Virol.76, 8900–8909 (2002). CASPubMedPubMed Central Google Scholar
Baud, D. et al. Immunogenicity against human papillomavirus type 16 virus-like particles is strongly enhanced by the PhoPc phenotype in Salmonella enterica serovar Typhimurium. Infect. Immun.72, 750–756 (2004). CASPubMedPubMed Central Google Scholar
Baud, D., Ponci, F., Bobst, M., De Grandi, P. & Nardelli-Haefliger, D. Improved efficiency of a Salmonella-based vaccine against human papillomavirus type 16 virus-like particles achieved by using a codon-optimized version of L1. J. Virol.78, 12901–12909 (2004). CASPubMedPubMed Central Google Scholar
Gillison, M. L. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl Cancer Inst.92, 709–720 (2000). CASPubMed Google Scholar
Garnett, G. P. Role of herd immunity in determining the effect of vaccines against sexually transmitted disease. J. Infect. Dis.191 Suppl. 1, S97–S106 (2005). PubMed Google Scholar
Taira, A. V., Neukermans, C. P. & Sanders, G. D. Evaluating human papillomavirus vaccination programs. Emerg. Infect. Dis.10, 1915–1923 (2004). PubMedPubMed Central Google Scholar
Clifford, G. M. et al. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J. Natl Cancer Inst.97, 425–432 (2005). PubMed Google Scholar
Bhatia, S. et al. Solid cancers after bone marrow transplantation. J. Clin. Oncol.19, 464–471 (2001). CASPubMed Google Scholar
Cornejo-Juarez, P. et al. Randomized controlled trial of Hepatitis B virus vaccine in HIV-1-infected patients comparing two different doses. AIDS Res. Ther.3, 9 (2006). PubMedPubMed Central Google Scholar
de Melo-Martin, I. The promise of the human papillomavirus vaccine does not confer immunity against ethical reflection. Oncologist11, 393–396 (2006). CASPubMed Google Scholar
Zimmerman, R. K. Ethical analysis of HPV vaccine policy options. Vaccine (2006).
Winer, R. L. et al. Condom use and the risk of genital human papillomavirus infection in young women. N. Engl J. Med.354, 2645–2654 (2006). CASPubMed Google Scholar
Castellsague, X. et al. Male circumcision, penile human papillomavirus infection, and cervical cancer in female partners. N. Engl. J. Med.346, 1105–1112 (2002). PubMed Google Scholar
Steinbrook, R. The potential of human papillomavirus vaccines. N. Engl. J. Med.354, 1109–1112 (2006). CASPubMed Google Scholar
Anhang, R., Wright, T. C. Jr, Smock, L. & Goldie, S. J. Women's desired information about human papillomavirus. Cancer100, 315–320 (2004). PubMed Google Scholar
Garnett, G. P. & Waddell, H. C. Public health paradoxes and the epidemiological impact of an HPV vaccine. J. Clin. Virol.19, 101–111 (2000). CASPubMed Google Scholar
Hughes, J. P., Garnett, G. P. & Koutsky, L. The theoretical population-level impact of a prophylactic human papilloma virus vaccine. Epidemiology13, 631–639 (2002). PubMed Google Scholar
Franco, E. L., Rohan, T. E. & Villa, L. L. Epidemiologic evidence and human papillomavirus infection as a necessary cause of cervical cancer. J. Natl Cancer Inst.91, 506–511 (1999). CASPubMed Google Scholar
McCance, D. J. Human papillomaviruses and cell signaling. Sci. STKE2005, pe29 (2005). PubMed Google Scholar
Munger, K. et al. Mechanisms of human papillomavirus-induced oncogenesis. J. Virol.78, 11451–11460 (2004). PubMedPubMed Central Google Scholar
Brandsma, J. L. Animal models of human-papillomavirus-associated oncogenesis. Intervirology37, 189–200 (1994). CASPubMed Google Scholar
Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol.189, 12–19 (1999). This worldwide survey found HPV DNA in 99.7% of cervical cancers, indicating that HPV is a necessary cause of cervical cancer. CASPubMed Google Scholar
Meyers, C., Frattini, M. G., Hudson, J. B. & Laimins, L. A. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science257, 971–973 (1992). CASPubMed Google Scholar
Hawley-Nelson, P., Vousden, K. H., Hubbert, N. L., Lowy, D. R. & Schiller, J. T. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J.8, 3905–3910 (1989). CASPubMedPubMed Central Google Scholar
Goodwin, E. C. et al. Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl Acad. Sci. USA97, 10978–10983 (2000). CASPubMed Google Scholar
Rous, P. & Beard, J. W. The progression to carcinoma of virus induced rabbit papillomas (Shope). J. Exp. Med.62, 523–545 (1935). A description of the rabbit papillomavirus model of squamous cancer. CASPubMedPubMed Central Google Scholar
Durst, M., Bosch, F. X., Glitz, D., Schneider, A. & zur Hausen, H. Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines. J. Virol.65, 796–804 (1991). CASPubMedPubMed Central Google Scholar
Kirnbauer, R. et al. A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. J. Natl Cancer Inst.86, 494–499 (1994). The first description of the VLP ELISA and the presence of L1 VLP-specific antibodies in sera obtained from cervical cancer patients. CASPubMedPubMed Central Google Scholar
Ekalaksananan, T. et al. Usefulness of combining testing for p16 protein and human papillomavirus (HPV) in cervical carcinoma screening. Gynecol. Oncol. (2006).
US Food and Drug Administration. New Device Approval-Digene Hybrid Capture 2 High-Risk HPV DNA Test- P890064 S009 A004. US Food and Drug Administration[online], (2003).
Gravitt, P. E. et al. Evaluation of self-collected cervicovaginal cell samples for human papillomavirus testing by polymerase chain reaction. Cancer Epidemiol. Biomarkers Prev.10, 95–100 (2001). CASPubMed Google Scholar