Exploring the role of cancer stem cells in radioresistance (original) (raw)
Clarke, M. F. et al. Cancer stem cells — perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells. Cancer Res.66, 9339–9344 (2006). ArticleCASPubMed Google Scholar
Dingli, D. & Michor, F. Successful therapy must eradicate cancer stem cells. Stem Cells24, 2603–2610 (2006). ArticleCASPubMed Google Scholar
Baumann, M., Dubois, W. & Suit, H. D. Response of human squamous cell carcinoma xenografts of different sizes to irradiation: relationship of clonogenic cells, cellular radiation sensitivity in vivo, and tumor rescuing units. Radiation Res.123, 325–330 (1990). ArticleCASPubMed Google Scholar
Kummermehr, J. & Trott, K. R. in Stem cells (ed. Potten, C. S.) 363–400 (Academic Press Limited, London, 1997). Book Google Scholar
Hill, R. P. & Milas, L. The proportion of stem cells in murine tumors. Int. J. Radiat. Oncol. Biol. Phys.16, 513–518 (1989). ArticleCASPubMed Google Scholar
Trott, K. R. Tumour stem cells: the biological concept and its application in cancer treatment. Radiother. Oncol.30, 1–5 (1994). ArticleCASPubMed Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleCASPubMedPubMed Central Google Scholar
O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature445, 106–110 (2007). ArticleCASPubMed Google Scholar
Aoyama, H. et al. Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int. J. Radiat. Oncol. Biol. Phys.56, 793–800 (2003). ArticlePubMed Google Scholar
Hof, H. et al. Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys.56, 335–341 (2003). ArticlePubMed Google Scholar
Onimaru, R. et al. Steep dose–response relationship for stage I non-small-cell lung cancer using hypofractionated high-dose irradiation by real-time tumor-tracking radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. (2007).
Onishi, H. et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J. Thorac. Oncol.2, S94–S100 (2007). ArticlePubMed Google Scholar
Madsen, B. L. et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int. J. Radiat. Oncol. Biol. Phys.67, 1099–1105 (2007). ArticlePubMed Google Scholar
Bernier, J., Hall, E. J. & Giaccia, A. Radiation oncology: a century of achievements. Nature Rev. Cancer4, 737–747 (2004). ArticleCAS Google Scholar
Thames, H. D. & Hendry, J. H. Fractionation in Radiotherapy (Taylor and Francis, Philadelphia, 1987).
Walstam, R. in 1895-1995 Radiation Oncology, a Century of Progress and Achievements p17–46 (ESTRO, Leuven, 1995). Google Scholar
Holthusen, H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlenther.57, 254–269 (1936) (in German). Google Scholar
Yaromina, A. et al. Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother. Oncol. (2007).
Gerweck, L. E., Zaidi, S. T. & Zietman, A. Multivariate determinants of radiocurability. I: Prediction of single fraction tumor control doses. Int. J. Radiat. Oncol. Biol. Phys.29, 57–66 (1994). ArticleCASPubMed Google Scholar
Taghian, A. et al. In vivo radiation sensitivity of glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys.32, 99–104 (1995). ArticleCASPubMed Google Scholar
Suit, H. D. et al. Radiation response of xenografts of a human squamous cell carcinoma and a glioblastoma multiforme: a progress report. Int. J. Radiat. Oncol. Biol. Phys.18, 365–373 (1990). ArticleCASPubMed Google Scholar
Yaromina, A. et al. Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: The need for a multivariate approach in biomarker studies. Radiother. Oncol.81, 122–129 (2006). ArticleCASPubMed Google Scholar
Schreiber, A. et al. Effect of the hypoxic cell sensitizer isometronidazole on local control of two human squamous cell carcinomas after fractionated irradiation. Strahlenther. Onkol.180, 375–382 (2004). ArticlePubMed Google Scholar
Kaanders, J. H. et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res.62, 7066–7074 (2002). CASPubMed Google Scholar
Overgaard, J., Eriksen, J. G., Nordsmark, M., Alsner, J. & Horsman, M. R. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol.6, 757–764 (2005). ArticleCASPubMed Google Scholar
Thames, H. D. Jr, Withers, H. R., Peters, L. J. & Fletcher, G. H. Changes in early and late radiation responses with altered dose fractionation: implications for dose–survival relationships. Int. J. Radiat. Oncol. Biol. Phys.8, 219–226 (1982). ArticlePubMed Google Scholar
Petersen, C. et al. Repopulation of FaDu human squamous cell carcinoma during fractionated radiotherapy correlates with reoxygenation. Int. J. Radiat. Oncol. Biol. Phys.51, 483–493 (2001). ArticleCASPubMed Google Scholar
Williams, M. V., Denekamp, J. & Fowler, J. F. A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int. J. Radiat. Oncol. Biol. Phys.11, 87–96 (1985). ArticleCASPubMed Google Scholar
Petersen, C. et al. Recovery from sublethal damage during fractionated irradiation of human FaDu SCC. Radiother. Oncol.74, 331–336 (2005). ArticlePubMed Google Scholar
Beck-Bornholdt, H. P., Omniczynski, M., Theis, E., Vogler, H. & Wurschmidt, F. Influence of treatment time on the response of rat rhabdomyosarcoma R1H to fractionated irradiation. Acta Oncol.30, 57–63 (1991). ArticleCASPubMed Google Scholar
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res.65, 10946–10951 (2005). ArticleCASPubMed Google Scholar
Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature432, 396–401 (2004). CASPubMed Google Scholar
Fang, D. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.65, 9328–9337 (2005). ArticleCASPubMed Google Scholar
Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA104, 973–978 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature445, 111–115 (2007). CASPubMed Google Scholar
Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science317, 337 (2007). ArticleCASPubMed Google Scholar
Hill, R. P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res.66, 1891–1895; discussion 1890 (2006). ArticleCASPubMed Google Scholar
Zheng, X., Shen, G., Yang, X. & Liu, W. Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res.67, 3691–3697 (2007). ArticleCASPubMed Google Scholar
Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell11, 69–82 (2007). ArticleCASPubMed Google Scholar
Wang, J. et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer122, 761–768 (2008). ArticleCASPubMed Google Scholar
Jamieson, C. H. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351, 657–667 (2004). ArticleCASPubMed Google Scholar
Maeda, S. et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br. J. Cancer98, 1389–1397 (2008). ArticleCASPubMedPubMed Central Google Scholar
Florek, M. et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res.319, 15–26 (2005). ArticleCASPubMed Google Scholar
Kennedy, J. A., Barabe, F., Poeppl, A. G., Wang, J. C. & Dick, J. E. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science318, 1722; author reply 1722 (2007). ArticleCASPubMed Google Scholar
Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science316, 600–604 (2007). ArticleCASPubMed Google Scholar
Hill, R. P. & Perris, R. “Destemming” cancer stem cells. J. Natl Cancer Inst.99, 1435–1440 (2007). ArticleCASPubMed Google Scholar
Munro, T. R. & Gilbert, C. W. The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br. J. Radiol.34, 246–251 (1961). ArticleCASPubMed Google Scholar
Krause, M., Zips, D., Thames, H. D., Kummermehr, J. & Baumann, M. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy. Radiother. Oncol.80, 112–122 (2006). ArticleCASPubMed Google Scholar
Hermans, A. F. & Barendsen, G. W. Changes of cell proliferation characteristics in a rat rhabdomyosarcoma before and after x-irradiation. Eur. J. Cancer5, 173–189 (1969). Article Google Scholar
Hill, R. P., Bush, R. S. & Yeung, P. The effect of anaemia on the fraction of hypoxic cells in an experimental tumor. Br. J. Radiol.44, 299–304 (1971). ArticleCASPubMed Google Scholar
Hewitt, H. B. & Wilson, C. W. Survival curves for tumor cells irradiated in vivo. Ann. NY Acad. Sci.95, 818–827 (1961). ArticleCASPubMed Google Scholar
Stephens, T. C., Currie, G. A. & Peacock, J. H. Repopulation of γ-irradiated Lewis lung carcinoma by malignant cells and host macrophage progenitors. Br. J. Cancer38, 573–582 (1978). ArticleCASPubMedPubMed Central Google Scholar
Suit, H., Shalek, R. & Wette, R. in Cellular Radiation Biology 514–530 (Williams and Wilkins, Baltimore, 1965).
Dubben, H. H., Thames, H. D. & Beck-Bornholdt, H. P. Tumor volume: a basic and specific response predictor in radiotherapy [see comments]. Radiother. Oncol.47, 167–174 (1998). ArticleCASPubMed Google Scholar
Bentzen, S. M. & Thames, H. D. Tumor volume and local control probability: clinical data and radiobiological interpretations [comment]. Int. J. Radiat. Oncol. Biol. Phys.36, 247–251 (1996). ArticleCASPubMed Google Scholar
Johnson, C. R., Thames, H. D., Huang, D. T. & Schmidt-Ullrich, R. K. The tumor volume and clonogen number relationship: tumor control predictions based upon tumor volume estimates derived from computed tomography. Int. J. Radiat. Oncol. Biol. Phys.33, 281–287 (1995). ArticleCASPubMed Google Scholar
Malaise, E. P., Fertil, B., Chavaudra, N. & Guichard, M. Distribution of radiation sensitivities for human tumor cells of specific histological types: comparison of in vitro to in vivo data. Int. J. Radiat. Oncol. Biol. Phys.12, 617–624 (1986). ArticleCASPubMed Google Scholar
Deacon, J., Peckham, M. J. & Steel, G. G. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother. Oncol.2, 317–323 (1984). ArticleCASPubMed Google Scholar
Buffa, F. M., Davidson, S. E., Hunter, R. D., Nahum, A. E. & West, C. M. Incorporating biologic measurements (SF(2), CFE) into a tumor control probability model increases their prognostic significance: a study in cervical carcinoma treated with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.50, 1113–1122 (2001). ArticleCASPubMed Google Scholar
West, C. M., Davidson, S. E., Roberts, S. A. & Hunter, R. D. The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br. J. Cancer76, 1184–1190 (1997). ArticleCASPubMedPubMed Central Google Scholar
Budach, W. et al. Tumors arising in SCID mice share enhanced radiation sensitivity of SCID normal tissues. Cancer Res.52, 6292–6296 (1992). CASPubMed Google Scholar
Gerweck, L. E., Vijayappa, S., Kurimasa, A., Ogawa, K. & Chen, D. J. Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res.66, 8352–8355 (2006). ArticleCASPubMed Google Scholar
Ogawa, K. et al. Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res.67, 4016–4021 (2007). ArticleCASPubMed Google Scholar
Kasten-Pisula, U. et al. The extreme radiosensitivity of the squamous cell carcinoma SKX is due to a defect in double-strand break repair. Radiother. Oncol. (in the press).
Withers, H. R. in Advances in radiation biology (eds. Lett, J. T. & Adler, H.) 241–247 (Academic Press, New York, 1975). Google Scholar
Steel, G. G., McMillan, T. J. & Peacock, J. H. The 5Rs of radiobiology. Int. J. Radiat. Biol.56, 1045–8 (1989). ArticleCASPubMed Google Scholar
Beck-Bornholdt, H. P., Schmidt, R., Schwarz, R. C. & Hubener, K. H. Biological isoeffect distributions: consideration of the influence of dose per fraction and overall treatment time. A possible tool in future treatment planning. Strahlenther. Onkol.167, 708–715 (1991). CASPubMed Google Scholar
Eramo, A. et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ.13, 1238–1241 (2006). ArticleCASPubMed Google Scholar
Ghods, A. J. et al. Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells25, 1645–53 (2007). ArticleCASPubMed Google Scholar
Kang, M. K. & Kang, S. K. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev.16, 837–847 (2007). ArticleCASPubMed Google Scholar
Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W. & Guan, X. Y. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene27, 1749–1758 (2008). ArticleCASPubMed Google Scholar
Mimeault, M., Hauke, R., Mehta, P. P. & Batra, S. K. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J. Cell. Mol. Med.11, 981–1011 (2007). ArticleCASPubMedPubMed Central Google Scholar
Denekamp, J. Tumour stem cells: facts, interpretation and consequences. Radiother. Oncol.30, 6–10 (1994). ArticleCASPubMed Google Scholar
Hendry, J. H., West, C. M., Moore, J. V. & Potten, C. S. Tumour stem cells: the relevance of predictive assays for tumour control after radiotherapy. Radiother. Oncol.30, 11–16 (1994). ArticleCASPubMed Google Scholar
Lobrich, M. & Kiefer, J. Assessing the likelihood of severe side effects in radiotherapy. Int. J. Cancer118, 2652–2656 (2006). ArticleCASPubMed Google Scholar
Akervall, J. Gene profiling in squamous cell carcinoma of the head and neck. Cancer Metastasis Rev.24, 87–94 (2005). ArticleCASPubMed Google Scholar
Andreassen, C. N. Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol.44, 801–815 (2005). ArticlePubMed Google Scholar
Eriksen, J. G. et al. Molecular profiles as predictive marker for the effect of overall treatment time of radiotherapy in supraglottic larynx squamous cell carcinomas. Radiother. Oncol.72, 275–282 (2004). ArticleCASPubMed Google Scholar
Buffa, F. M. et al. Molecular marker profiles predict locoregional control of head and neck squamous cell carcinoma in a randomized trial of continuous hyperfractionated accelerated radiotherapy. Clin. Cancer Res.10, 3745–3754 (2004). ArticleCASPubMed Google Scholar
Bentzen, S. M. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol.6, 112–117 (2005). ArticlePubMed Google Scholar
Chao, K. S. et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.49, 1171–1182 (2001). ArticleCASPubMed Google Scholar
Nordsmark, M. et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother. Oncol. (2005).
Kaanders, J. H. et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res.62, 7066–7074 (2002). CASPubMed Google Scholar
Eriksen, J. G., Alsner, J., Steiniche, T. & Overgaard, J. The possible role of TP53 mutation status in the treatment of squamous cell carcinomas of the head and neck (HNSCC) with radiotherapy with different overall treatment times. Radiother. Oncol.76, 135–142 (2005). ArticleCASPubMed Google Scholar
Eriksen, J. G., Steiniche, T. & Overgaard, J. The influence of epidermal growth factor receptor and tumor differentiation on the response to accelerated radiotherapy of squamous cell carcinomas of the head and neck in the randomized DAHANCA 6 and 7 study. Radiother. Oncol.74, 93–100 (2005). ArticleCASPubMed Google Scholar
Begg, A. C. et al. The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis. Radiother. Oncol.50, 13–23 (1999). ArticleCASPubMed Google Scholar
Lee, C. M. et al. Correlation between human epidermal growth factor receptor family (EGFR, HER2, HER3, HER4), phosphorylated Akt (P-Akt), and clinical outcomes after radiation therapy in carcinoma of the cervix. Gynecol. Oncol.99, 415–421 (2005). ArticleCASPubMed Google Scholar
Eriksen, J. G. & Overgaard, J. Lack of prognostic and predictive value of CA IX in radiotherapy of squamous cell carcinoma of the head and neck with known modifiable hypoxia: an evaluation of the DAHANCA 5 study. Radiother. Oncol.83, 383–388 (2007). ArticleCASPubMed Google Scholar
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature444, 756–760 (2006). ArticleCASPubMed Google Scholar
Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res.66, 7843–7848 (2006). ArticleCASPubMed Google Scholar
Blazek, E. R., Foutch, J. L. & Maki, G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int. J. Radiat. Oncol. Biol. Phys.67, 1–5 (2007). ArticleCASPubMed Google Scholar
Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst.98, 1777–1785 (2006). ArticlePubMed Google Scholar
Woodward, W. A. et al. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA104, 618–623 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, M. S. et al. Wnt/ β-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J. Cell Sci.120, 468–477 (2007). ArticleCASPubMed Google Scholar
Tannock, I. F. & Lee, C. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br. J. Cancer84, 100–105 (2001). ArticleCASPubMedPubMed Central Google Scholar
Brown, J. M. & Attardi, L. D. The role of apoptosis in cancer development and treatment response. Nature Rev. Cancer5, 231–237 (2005). Article Google Scholar
Hambardzumyan, D., Squatrito, M. & Holland, E. C. Radiation resistance and stem-like cells in brain tumors. Cancer Cell10, 454–456 (2006). ArticleCASPubMed Google Scholar
Ciampi, A., Kates, L., Buick, R., Kriukov, Y. & Till, J. E. Multi-type Galton–Watson process as a model for proliferating human tumour cell populations derived from stem cells: estimation of stem cell self-renewal probabilities in human ovarian carcinomas. Cell Tissue Kinet.19, 129–140 (1986). CASPubMed Google Scholar
Diehn, M. & Clarke, M. F. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J. Natl Cancer Inst.98, 1755–1757 (2006). ArticlePubMed Google Scholar
Wright, E. A. & Howard-Flanders, P. The influence of oxygen on the radiosensitivity of mammalian tissues. Acta Radiologica48, 26–32 (1957). ArticleCASPubMed Google Scholar
Gray, L. H., Conger, A. D., Ebert, M., Hornsay, S. & Scott, O. C. A. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol.26, 638–648 (1953). ArticleCASPubMed Google Scholar
Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev.26, 225–239 (2007). ArticleCASPubMed Google Scholar
Overgaard, J. Hypoxic radiosensitization: adored and ignored. J. Clin. Oncol.25, 4066–4074 (2007). ArticlePubMed Google Scholar
Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol.23, 9361–9374 (2003). ArticleCASPubMedPubMed Central Google Scholar
Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev.20, 557–570 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell11, 335–347 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell9, 617–628 (2005). ArticleCASPubMed Google Scholar
Platet, N. et al. Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett.258, 286–290 (2007). ArticleCASPubMed Google Scholar
Quennet, V. et al. Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother. Oncol.81, 130–135 (2006). ArticleCASPubMed Google Scholar
Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys.47, 551–560 (2000). ArticleCASPubMed Google Scholar
Cordes, N., Seidler, J., Durzok, R., Geinitz, H. & Brakebusch, C. β1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene25, 1378–1390 (2006). ArticleCASPubMed Google Scholar
Gilbertson, R. J. & Rich, J. N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Rev. Cancer7, 733–736 (2007). ArticleCAS Google Scholar
Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev.22, 436–48 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med.354, 567–578 (2006). ArticleCASPubMed Google Scholar
Pignon, J. P., Bourhis, J., Domenge, C. & Designe, L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet355, 949–955 (2000). ArticleCASPubMed Google Scholar
Krause, M. et al. EGFR-TK inhibition before radiotherapy reduces tumour volume but does not improve local control: Differential response of cancer stem cells and nontumourigenic cells? Radiother. Oncol.83, 316–325 (2007). ArticleCASPubMed Google Scholar
Baumann, M. et al. Selective inhibition of the epidermal growth factor tyrosine kinase by BIBX1382BS improves growth delay but not local control after fractionated irradiation in human FaDu squamous cell carcinoma in nude mice. Int. J. Radiat. Biol.79, 1547–559 (2003). Google Scholar
Zips, D. et al. Experimental study on different combination schedules of VEGF-receptor inhibitor PTK787/ZK222584 and fractionated irradiation. Anticancer Res.23, 3869–3876 (2003). CASPubMed Google Scholar
Zips, D. et al. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice. Int. J. Radiat. Oncol. Biol. Phys.61, 908–914 (2005). ArticleCASPubMed Google Scholar
Weppler, S. A. et al. Response of U87 glioma xenografts treated with concurrent rapamycin and fractionated radiotherapy: Possible role for thrombosis. Radiother. Oncol.82, 96–104 (2007). ArticleCASPubMed Google Scholar
Milas, L. et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin. Cancer Res.6, 701–708 (2000). CASPubMed Google Scholar
Nasu, S., Ang, K. K., Fan, Z. & Milas, L. C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int. J. Radiat. Oncol. Biol. Phys.51, 474–477 (2001). ArticleCASPubMed Google Scholar
Krause, M. et al. Different classes of EGFR inhibitors may have different potential to improve local tumour control after fractionated irradiation: a study on C225 in FaDu hSCC. Radiother. Oncol.74, 109–115 (2005). ArticleCASPubMed Google Scholar
Kozin, S. V. et al. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res.61, 39–44 (2001). CASPubMed Google Scholar
Bayer, C. et al. PAI-1 levels predict response to fractionated irradiation in 10 human squamous cell carcinoma lines of the head and neck. Radiother. Oncol.86, 361–368 (2008). ArticleCASPubMed Google Scholar
Schutze, C. et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother. Oncol.83, 311–315 (2007). ArticleCASPubMed Google Scholar
Suit, H. D., Sedlacek, R. & Thames, H. D. in Rodent tumor models in experimental cancer therapy (ed. Kallman, R. F.) 138–148 (Pergamon Press, New York, 1987). Google Scholar