Zebrowski, B. K. et al. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann. Surg. Oncol.6, 373 (1999). ArticleCASPubMed Google Scholar
Mesiano, S., Ferrara, N. & Jaffe, R. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am. J. Path.153, 1249 (1998). ArticleCASPubMedPubMed Central Google Scholar
Numnum, T. M. et al. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian cancer. Gynecol. Oncol.102, 425 (2006). ArticleCASPubMed Google Scholar
Berek, J. S. in Practical Gynecologic Oncology 4th edn Ch. 11 Ovarian Cancer (eds Berek, J. S. & Hacker, N. F.) 443–511 (Lippincott Williams & Wilkins, Philadelphia, 2005). Google Scholar
Armstrong, D. K. et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med.354, 34–43 (2006). ArticleCASPubMed Google Scholar
Feeley, K. M. & Wells, M. Precursor lesions of ovarian epithelial malignancy. Histopathology38, 87 (2001). ArticleCASPubMed Google Scholar
Zhang, S. et al. Identification and characterization of ovarian cancer initiating cells from primary human tumors. Cancer Res.68, 4311–4320 (2008). This report established the phenotype of tumour-initiating ovarian cancer cells. ArticleCASPubMedPubMed Central Google Scholar
Alvero, A. B. et al. Molecular phenotyping of human ovarian cancer stem cells unravel the mechanisms for repair and chemoresistance. Cell Cycle8, 188–169 (2009). Article Google Scholar
Jacobs, I. J. et al. Clonal origin of epithelial ovarian cancer: analysis by loss of heterozygosity, p53 mutation and X chromosome inactivation. J. Natl Cancer Inst.84, 1793–1798 (1992). ArticleCASPubMed Google Scholar
Bast, R. C. Jr & Mills, G. B. in The Molecular Basis of Cancer 3rd edn (eds Mendelsohn, J., Howley, P., Israel, M., Gray, J. & Thompson, C. ) 441–455 (W. B. Saunders Co., Philadelphia, 2008). Book Google Scholar
Iwabuchi, H. et al. Genetic analysis of benign, low-grade and high-grade ovarian tumors. Cancer Res.55, 6172–6180 (1995). CASPubMed Google Scholar
Risch, H. A. et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl Cancer Inst.98, 1675–1677 (2006). ArticleCAS Google Scholar
Cramer, D. W. et al. Genital talc exposure and risk of ovarian cancer. Int. J. Cancer81, 351–356 (1999). ArticleCASPubMed Google Scholar
Muscat, J. E. & Huncharek, M. S. Perineal talc use and ovarian cancer: a critical review. Eur. J. Cancer Prev.62, 358–360 (2006). Google Scholar
Kohler, M. F. et al. Spectrum of mutation and frequency of allelic deletion of the p53 gene in ovarian cancer. J. Natl Cancer Inst.85, 1513–1519 (1993). This paper indicated that ovarian cancers undergo spontaneous mutation. ArticleCASPubMed Google Scholar
Berchuck, A. et al. Overexpression of p53 is not a feature of benign and early-stage borderline epithelial ovarian tumors. Gynecol. Oncol.52, 232–236 (1994). ArticleCASPubMed Google Scholar
Berchuck, A. et al. The p53 tumor suppressor gene frequently is altered in gynecologic cancers. Am. J. Obstet. Gynecol.170, 246–252 (1994). ArticleCASPubMed Google Scholar
Havrilesky, L. et al., Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol.21, 3814–3825 (2003). ArticleCASPubMed Google Scholar
Hall, J. et al. Critical evaluation of p53 as a prognostic marker in ovarian cancer. Exp. Rev. Mol. Med.12, 1–20 (2004). A thoughtful and thorough review of the prognostic significance of p53 in ovarian cancer. Article Google Scholar
Buller, R. E. et al. A phase I/II trial of rAd/p53 (SCH58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther.9, 553–566 (2002). ArticleCASPubMed Google Scholar
Vasey, P. A. et al. Phase I trial of intraperitoneal injection of the _E1B_-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J. Clin. Oncol.15, 1562–1569 (2002). Google Scholar
Kojima, K. et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood106, 3150–3159 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yu, Y. et al. in Methods in Enzymology: Regulators and Effectors of Small GTPases. Ras Proteins Vol. 407 (eds Balch, W. E., Der, C. & Hall, A.) 455–467 (Academic, New York, 2006). A comprehensive review of the role of DIRAS3 (ARHI) in ovarian cancer. Book Google Scholar
Cvetkovic, D. et al. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol. Oncol.95, 449–455 (2004). ArticleCASPubMed Google Scholar
Feng, W. et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer112, 1489–1502 (2008). ArticleCASPubMed Google Scholar
Chen, M. Y. et al. Synergistic inhibition of ovarian cancer cell growth with demethylating agents and histone deacetylase inhibitors. Proc. Amer. Assoc. Cancer Res. 681 (2007).
Mackay, H. et al. A phase II trial of the histone deacetylase inhibitor belinostat (PSC101) in patients with platinum resistant epithelial ovarian tumors and micropapillary/borderline (LMP) ovarian tumors. A PMH phase II consortium trial. J. Clin. Oncol.26 (Suppl.) 5518 (2008). Article Google Scholar
Balch, C. et al. The epigenetics of ovarian cancer drug resistance and resensitization. Am. J. Obstet. Gynecol.191, 1552–1572 (2004). ArticleCASPubMed Google Scholar
Bast, R. C. et al. A phase IIa study of a sequential regimen using azacitidine to reverse platinum resistance to carboplatin in patients with platinum resistant or refractory epithelial ovarian cancer. J. Clin. Oncol.26 (Suppl.) 3500 (2008). Article Google Scholar
Rubin, S. C. et al. BRCA1, BRCA2, and hereditary nonpolyposis colorectal cancer gene mutations in an unselected ovarian cancer population: relationship to family history and implications for genetic testing. Am. J. Obstet. Gynecol.178, 670–677 (1998). ArticleCASPubMed Google Scholar
Lancaster, J. M. et al. BRCA2 mutations in primary breast and ovarian cancers. Nature Genet.13, 238–240 (1996). ArticleCASPubMed Google Scholar
Boyd, J. in Ovarian Cancer 5 (eds Sharp, F., Blackett, T., Berek, J. & Bast, R.) 3–16 (Isis Medical Media, Oxford, 1998). Google Scholar
Chetrit, A., Hirsh-Yechezkel, G., Ben-David, Y., Lubin, F. & Friedman, E. Effect of BRCA 1/2 mutations on long-term survival of patients with ovarian cancer: the national Israeli study of ovarian cancer. J. Clin. Oncol.26, 20–25 (2008). ArticlePubMed Google Scholar
Moynahan, M. E. et al. Homology directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res.61, 4842–4850 (2001). CASPubMed Google Scholar
Narod, S. A & Foulkes, W. D. BRCA1 and BRCA2, 1994 and beyond. Nature Rev. Cancer4, 665–676 (2004). ArticleCAS Google Scholar
Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature451, 1111–1115 (2008). ArticleCASPubMed Google Scholar
Sakai, W. et al. Secondary mutations as a mechanism of resistance to cisplatin in _BRCA2_-mutated cancers. Nature451, 1116–1120 (2008). ArticleCASPubMedPubMed Central Google Scholar
Drew, Y. & Calvert, H. The potential of PARP inhibitors in genetic breast and ovarian cancers. Ann. NY Acad. Sci.1138, 126–145 (2008). ArticleCAS Google Scholar
Yap, T. A., Carden, C. T. & Kaye, S. B. Beyond chemotherapy: targeted therapies in ovarian cancer. Nature Rev. Cancer9, 167–181 (2009). A thorough and up-to-date review of molecular therapeutics for ovarian cancer. ArticleCAS Google Scholar
Hennessey, B. et al. BRCA status in ovarian cancer. Proc. Amer. Soc. Clin. Oncol. (in the press).
Umayahara, K. et al. in Ovarian Cancer 5 (eds Sharp, F., Blackett, T., Berek, J. & Bast, R.) 17–23 (Isis Medical Media, Oxford, 1998). Google Scholar
Jazaeri, A. A. et al. Gene expression profiles of _BRCA1_-linked, _BRCA2_-linked, and sporadic ovarian cancers. J. Natl Cancer Inst.13, 990–1000 (2002). This provocative paper suggests that sporadic ovarian cancers are either BRCA1 or BRCA2-like. Article Google Scholar
Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical–basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. USA102, 12519–12524 (2005). ArticleCAS Google Scholar
Zhang, L. et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc. Natl Acad. Sci. USA103, 9136–9141 (2003). ArticleCAS Google Scholar
Tangir, J. et al. Frequent microsatellite instability in epithelial borderline ovarian tumors. Cancer Res.56, 2501–2505 (1996). CASPubMed Google Scholar
Rodabaugh, K. J. et al. Detailed deletion mapping of chromosome 9p and p16 gene alterations in human borderline and invasive epithelial ovarian tumors. Oncogene11, 1249–1254 (1995). CASPubMed Google Scholar
Berchuck, A. et al. Overexpression of p53 is not a feature of benign and early- stage borderline epithelial ovarian tumors. Gynecol. Oncol.52, 232–236 (1994). ArticleCASPubMed Google Scholar
Iwabuchi, H. et al. Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res.55, 6172–6180 (1995). CASPubMed Google Scholar
Abu-Jawdeh, G. M. et al. Estrogen receptor expression is a common feature of ovarian borderline tumors. Gynecol. Oncol.60, 301–307 (1996). ArticleCASPubMed Google Scholar
Liu, J. et al. A genetically defined model for human ovarian cancer. Cancer Res.64, 1655–1663 (2004). This paper showed that an ovarian phenotype can be induced in xenografts by transfecting normal human ovarian surface epithelial cells with SV40 T antigen, telomerase and mutant Ras. ArticleCASPubMed Google Scholar
Cheng, K. W. et al. Emerging role of Rab GTPases in cancer and human disease. Cancer Res.65, 2516–2519 (2005). ArticleCASPubMed Google Scholar
Gautschi, O. et al. Aurora kinases as cancer drug targets. Clin. Cancer Res.14, 1639–1648 (2008). ArticleCASPubMed Google Scholar
Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular regulatory region of Notch3. J. Biol. Chem.283, 8046–8054 (2008). ArticleCASPubMed Google Scholar
Schilder, R. J, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin. Cancer Res.11, 5539–5548 (2005). ArticleCASPubMed Google Scholar
Gordon, A. N. et al. Efficacy and safety of erlotinib HCI, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int. J. Gynecol. Cancer15, 785–792 (2005). ArticleCASPubMed Google Scholar
Heinemann, V., Stintzing, S., Kirchner, T., Boeck, S. & Jung, A. Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat. Rev.35, 262–271 (2009). ArticleCASPubMed Google Scholar
Bookman, M. A. et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol.21, 283–290 (2003). ArticleCASPubMed Google Scholar
Hu, L., Hofmann, J., Lu, Y., Mills, G. B. & Jaffe, R. B. Inhibition of phophatidylinositol 3′ kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res.62, 1087–1092 (2002). CASPubMed Google Scholar
Raynaud, F. L. et al. Pharmacologic characterization of a potent inhibitor of class I phophatidylinositide 3-kinases. Cancer Res.67, 5840–5850 (2007). ArticleCASPubMed Google Scholar
Rosen, D. G. et al. The role of constitutively active signal transducer and activator of transcription 3 in ovarian tumorigenesis and prognosis. Cancer107, 2730–2740 (2006). ArticleCASPubMed Google Scholar
Burke, W. M. et al. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene20, 7925–7934 (2001). ArticleCASPubMed Google Scholar
Duan, Z. et al. 8-benzyl-4-oxo-8-azabicyclo[3.2.1]oct-2-ene-6, 7-dicarboxylic acid (SD-1008), a novel janus kinase 2 inhibitor, increases chemotherapy sensitivity in human ovarian cancer cells. Mol. Pharmacol.72, 1137–1145 (2007). ArticleCASPubMed Google Scholar
Murph, M. et al. Of spiders and crabs: the emergence of lysophospholipids and their metabolic pathways as targets for therapy in cancer. Clin. Cancer Res.12, 6598–6602 (2006). ArticleCASPubMed Google Scholar
Beck, H. P. et al. Discovery of potent LPA2 (EDG4) antagonists as potential anticancer agents. Bioorg. Med. Chem. Lett.18, 1037–1041 (2008). ArticleCASPubMed Google Scholar
Lin, Y. G. et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway. Clin. Cancer Res.13, 3423–3430 (2007). ArticleCASPubMed Google Scholar
Samanta, A. K, Huang, H. J, Bast, R. C. Jr & Liao, W. Overexpression of MEKK3 confers resistance to apoptosis through activation of NFκB. J. Biol. Chem.279, 7576–7583 (2004). ArticleCASPubMed Google Scholar
Häcker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Science STKE357, re 13 (2006). Google Scholar
Yang, J. et al. The essential role of MEKK3 in TNF-induced NF-κB activation. Nature Immunol.2, 620–624 (2001). ArticleCAS Google Scholar
Karin, M. Nuclear factor κB in cancer development and progression. Nature441, 431–436 (2006). ArticleCASPubMed Google Scholar
See, H. T., Kavanagh, J. J., Hu, W. & Bast, R. C. Jr. Targeted therapy for epithelial ovarian cancer: current status and future prospects. Int. J. Gynecol. Cancer13, 701–734 (2004). Article Google Scholar
Suh, D. S., Yoon, M. S., Choi, K. U. & Kim, J. Y. Significance of E2F-1 overexpression in ovarian cancer. Int. J. Gynecol. Cancer18, 492–498 (2008). ArticleCASPubMed Google Scholar
Reimer, D. et al. Expression of the E2 family of transcription factors and its clinical relevance in ovarian cancer. Ann. NY Acad. Sci.1091, 270–286 (2006). ArticleCASPubMed Google Scholar
Berchuck, A. et al. Regulation of growth of normal ovarian epithelial cells and ovarian cancer cell lines by transforming growth factor-β. Am. J. Obstet. Gynecol.166, 676–684 (1992). ArticleCASPubMed Google Scholar
Sunde, J. S. et al. Expression profiling identifies altered expression of genes that contribute to the inhibition of transforming growth factor-β signaling in ovarian cancer. Cancer Res.66, 8404–8412 (2006). ArticleCASPubMed Google Scholar
Fuller, A. F. Jr, Guy, S., Budzik, G. P. & Donahoe, P. K. Mullerian inhibiting substance inhibits colony growth of a human ovarian carcinoma cell line. J. Clin. Endocrinol. Metabol.54, 1051–1055 (1982). ArticleCAS Google Scholar
Szotek, P. P. et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc. Natl Acad. Sci. USA103, 11154–11159 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pieretti-Vanmarcke, R. et al. Mullerian inhibiting substance enhances subclinical doses of chemotherapeutic agents to inhibit human and mouse ovarian cancer. Proc. Natl Acad. Sci. USA103, 17426–17431 (2006). ArticleCASPubMedPubMed Central Google Scholar
Reed, J. et al. Significance of Fas receptor protein expression in epithelial ovarian cancer. Hum. Pathol.36, 971–976 (2005). ArticleCASPubMed Google Scholar
Kar, R. et al. Role of apoptotic regulators in human epithelial ovarian cancer. Cancer Biol. Ther.6, 1101–1105 (2007). ArticleCASPubMed Google Scholar
Schuyer, M. et al. Reduced expression of BAX is associated with poor prognosis in patients with epithelial ovarian cancer: a multifactorial analysis of TP53, p21, BAX and BCL-2. Br. J. Cancer85, 1359–1367 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lancaster, J. M. et al. High expression of tumor necrosis factor apoptosis- inducing ligand is associated with favorable ovarian cancer survival. Clin. Cancer Res.9, 762–766 (2003). CASPubMed Google Scholar
De la Torre, F. J. et al. Apoptosis in epithelial ovarian tumours: prognostic significance of clinical and histopathologic factors and its association with the immunohistochemical expression of apoptotic regulatory proteins (p53, bcl-2 and bax). Eur. J. Obstet. Gynecol. Reprod. Biol.130, 121–128 (2007). ArticlePubMedCAS Google Scholar
Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature402, 672–676 (1999). ArticleCASPubMed Google Scholar
Lu, Z. et al. A novel tumor suppressor gene ARHI induces autophagy and tumor dormancy in ovarian cancer xenografts. J. Clin. Invest.118, 3917–3929 (2008). The initial report that linked autophagy and tumour dormancy. CASPubMedPubMed Central Google Scholar
Ren, J. et al. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res.15, 3006–3014 (2006). ArticleCAS Google Scholar
Fishman, D. A. et al. Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent invasion in ovarian cancer cells. Cancer Res.1, 3194–3199 (2001). Google Scholar
Fang, X. et al. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J. Biol. Chem.279, 9653–9661 (2004). ArticleCASPubMed Google Scholar
Sood A, K. et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin. Cancer Res.15, 369–375 (2006). This report links stress to ovarian cancer growth through physiological mechanisms. ArticleCAS Google Scholar
Barbolina, M. V. et al. Microenvironmental regulation of membrane type 1 matrix metalloproteinase activity in ovarian carcinoma cells via collagen-induced EGR1 expression. J. Biol. Chem.16, 4924–4931 (2007). ArticleCAS Google Scholar
Cai, K. Q. et al. Prominent expression of metalloproteinases in early stages of ovarian tumorigenesis. Mol. Carcinog.46, 130–143 (2007). ArticleCASPubMed Google Scholar
Prezas, P. et al. Overexpression of the human tissue kallikrein genes KLK4, 5, 6, and 7 increases the malignant phenotype of ovarian cancer cells. Biol. Chem.387, 807–811 (2006). CASPubMed Google Scholar
Paliouras, M. et al. Human tissue kallikreins: the cancer biomarker family. Cancer Lett.28, 61–79 (2007). ArticleCAS Google Scholar
Yin, B. W. T. & Lloyd, K. O. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. J. Biol. Chem.276, 27371–27375 (2001). ArticleCASPubMed Google Scholar
Gubbels, J. A. et al. Mesothelin–MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol. Cancer5, 50 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Rump, A., Morikawa, Y. & Tanaka, M. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem.279, 9190–9198 (2004). ArticleCASPubMed Google Scholar
Cannistra, S. A. et al. CD44 variant expression is a common feature of epithelial ovarian cancer: lack of association with standard prognostic factors. J. Clin. Oncol.13, 1912–1921 (1995). ArticleCASPubMed Google Scholar
Strobel, T., Swanson, L. & Cannistra, S. A. In vivo inhibition of CD44 limits intra-abdominal spread of a human ovarian cancer xenograft in nude mice: a novel role for CD44 in the process of peritoneal implantation. Cancer Res.57, 1228–1232 (1997). CASPubMed Google Scholar
Yoneda, J. et al. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J. Natl Cancer Inst.90, 447–454 (1998). ArticleCASPubMed Google Scholar
Birrer, M. J. et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J. Clin Oncol.1, 2281–2287 (2007). A recent comparative genomic hybridization analysis that indicates the importance of FGF1 in the pathogenesis of ovarian cancer. ArticleCAS Google Scholar
Monk, B. J. et al. Salvage bevacizumab (rhuMAB VEGF)-based therapy after multiple prior cytoxic regimens in advanced refractory epithelial ovarian cancer. Gynecol. Oncol.102, 140–144 (2006). ArticleCASPubMed Google Scholar
Kamat, A. A. et al. Metronomic chemotherapy enhances the efficacy of antivascular therapy in ovarian cancer. Cancer Res.67, 281–288 (2007). ArticleCASPubMed Google Scholar
Lu, C. et al. Impact of vessel maturation on antiangiogenic therapy in ovarian cancer. Am. J. Obstet. Gynecol.198, 477.e1–477.e9 (2008). ArticleCAS Google Scholar
Lin, Y. G. et al. EphA2 overexpression in associated with angiogenesis in ovarian cancer. Cancer109, 332–340 (2007). ArticleCASPubMed Google Scholar
Landen, C. N. et al. Efficacy and antivascular effects of EphA2 reduction with an agonistic antibody in ovarian cancer. J. Natl Cancer Inst.98, 1558–1570 (2006). ArticleCASPubMed Google Scholar
Landen, C. N. et al. Intraperitoneal delivery of liposomal siRNA for therapy of advanced ovarian cancer. Cancer Biol. Ther.5, 1708–1713 (2006). This paper showed that neutral liposomes allow the efficient delivery of siRNA to human ovarian cancer xenografts. ArticleCASPubMed Google Scholar
Yang, G. et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc. Natl Acad. Sci. USA31, 16472–16477 (2006). ArticleCAS Google Scholar
Milliken, D. et al. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin. Cancer Res.8, 1108–1114 (2002). CASPubMed Google Scholar
Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med.16, 203–213 (2003). A thorough study that documents the prognostic significance of T cell infiltration in ovarian cancer. Article Google Scholar
Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA102, 18538–18543 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jiang, Y. P. et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol. Oncol.103, 226–233 (2006). ArticleCASPubMed Google Scholar
Kryczek, I. et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res.65, 465–472 (2005). CASPubMed Google Scholar
Curiel, T. J. et al. Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res.64, 5535–5538 (2004). ArticleCASPubMed Google Scholar
Kajiyana, H. et al. Involvement of SDF-1α/CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian cancer. Int. J. Cancer122, 91–99 (2008). ArticleCAS Google Scholar
Szosarek, P. W. et al. Expression and regulation of tumor necrosis factor α in normal and malignant ovarian epithelium. Mol. Cancer Ther.5, 382–390 (2006). Article Google Scholar
Kulbe, H. et al. The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res.67, 585–592 (2007). ArticleCASPubMedPubMed Central Google Scholar
Madhusdan, S. et al. Study of etanercept, a tumor necrosis α inhibitor, in recurrent ovarian cancer. J. Clin. Oncol.23, 5950–5959 (2005). ArticleCAS Google Scholar
Rustin, G. J. S. et al. Use of CA-125 in clinical trial evaluation of new therapeutic drugs for ovarian cancer. Clin. Cancer Res.10, 3919–3926 (2004). A recent review regarding the application of CA125 to clinical trials. ArticleCASPubMed Google Scholar
Menon, U. et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Lancet Oncol.10, 327–340 (2009). Initial data from this trial suggest that combining CA125 and transvaginal ultrasound will be an effective strategy for the early detection of ovarian cancer. ArticlePubMed Google Scholar
Das, P. M. & Bast, R. C Jr. Early detection of ovarian cancer. Biomarkers Med.2, 291–303 (2008). ArticleCAS Google Scholar
Bouchard, D. et al. Proteins with whey-acidic protein motifs and cancer. Lancet Oncol.7, 167–174 (2006). ArticleCASPubMed Google Scholar
Lu, K. H. et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin. Cancer Res.10, 3291–3300 (2004). ArticleCASPubMed Google Scholar
Clarke, C. H. et al. A panel of proteomic markers improves the sensitivity of CA125 for detecting stage I epithelial ovarian cancer. J. Clin. Oncol.26 (Suppl.) 5542 (2008). Article Google Scholar
Bast, R. C. et al. Optimizing a two-stage strategy for early detection of ovarian cancer. NCI Translational Science Meeting 300, #292. National Cancer Institute[online] (2008).
Shridhar, V., et al. Genetic analysis of early- versus late-stage ovarian tumors. Cancer Res.61, 5895–5904 (2001). CASPubMed Google Scholar
Marquez, R. T. et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium and colon. Clin. Cancer Res.11, 6116 (2005). This study showed that the gene expression profiles of different ovarian cancer histotypes correlate with their morphological counterparts in normal tissues. ArticleCASPubMed Google Scholar
Cheng, W. et al. Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nature Med.11, 531 (2005). The authors make a convincing argument that the HOX genes have a role in determining ovarian cancer histotypes. ArticleCASPubMed Google Scholar
Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res.14, 5198–5208 (2008). ArticleCASPubMed Google Scholar
Schwartz, D. R. et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res.63, 4722–4729 (2002). Google Scholar
Kurman R. J. & Shih, L. E. M. Pathogenesis of ovarian cancer: lessons from morphology and biology and their clinical implications. Int. J. Gynecol. Pathol.27, 151–160 (2008). This review summarizes the evidence for type I and type II ovarian cancer. Google Scholar
Bast, R. C. Jr et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. New Engl. J. Med.309, 883–887 (1983). This is the original report of the CA125 assay. ArticlePubMed Google Scholar
Spaeth, E. L. et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contribures to fibrovascular network expansion and tumor progression. PLoS ONE4, e4992 (2009). ArticlePubMedPubMed CentralCAS Google Scholar