SIRT1: recent lessons from mouse models (original) (raw)
Michan, S. & Sinclair, D. Sirtuins in mammals: insights into their biological function. Biochem. J.404, 1–13 (2007). ArticleCAS Google Scholar
Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13, 2570–2580 (1999). ArticleCAS Google Scholar
Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature410, 227–230 (2001). ArticleCAS Google Scholar
Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA101, 15998–16003 (2004). ArticleCAS Google Scholar
Howitz, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature425, 191–196 (2003). ArticleCAS Google Scholar
Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature430, 686–689 (2004). ArticleCAS Google Scholar
Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science289, 2126–2128 (2000). ArticleCAS Google Scholar
Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol.2, e296 (2004). Article Google Scholar
Fabrizio, P. et al. Sir2 blocks extreme life-span extension. Cell123, 655–667 (2005). ArticleCAS Google Scholar
Bass, T. M., Weinkove, D., Houthoofd, K., Gems, D. & Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev.128, 546–552 (2007). ArticleCAS Google Scholar
Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature444, 337–342 (2006). CASPubMedPubMed Central Google Scholar
Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell127, 1109–1122 (2006). ArticleCAS Google Scholar
Pearson, K. J. et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab.8, 157–168 (2008). ArticleCAS Google Scholar
Kaeberlein, M. et al. Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem.280, 17038–17045 (2005). ArticleCAS Google Scholar
Beher, D. et al. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem. Biol. Drug Des.74, 619–624 (2009). ArticleCAS Google Scholar
Pacholec, M. et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem.285, 8340–8351 (2010). ArticleCAS Google Scholar
Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature458, 1056–1060 (2009). ArticleCAS Google Scholar
Hawley, S. A. et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab.11, 554–565 (2010). ArticleCAS Google Scholar
Garber, K. A mid-life crisis for aging theory. Nature Biotech.26, 371–374 (2008). ArticleCAS Google Scholar
Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell107, 137–148 (2001). ArticleCAS Google Scholar
Vaziri, H. et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell107, 149–159 (2001). ArticleCAS Google Scholar
Cheng, H. L. et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA100, 10794–10799 (2003). ArticleCAS Google Scholar
Kamel, C., Abrol, M., Jardine, K., He, X. & McBurney, M. W. SirT1 fails to affect p53-mediated biological functions. Aging Cell5, 81–88 (2006). ArticleCAS Google Scholar
Deng, C. X. SIRT1, is it a tumor promoter or tumor suppressor? Int. J. Biol. Sci.5, 147–152 (2009). ArticleCAS Google Scholar
Firestein, R. et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE3, e2020 (2008). Article Google Scholar
Herranz, D. et al. Sirt1 improves healthy ageing and protects from metabolic syndrome -associated cancer. Nature Commun. 12 Apr 2010 (doi:10.1038/ncomms1001).
Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell135, 907–918 (2008). ArticleCAS Google Scholar
Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell14, 312–323 (2008). ArticleCAS Google Scholar
Brooks, C. L. & Gu, W. How does SIRT1 affect metabolism, senescence and cancer? Nature Rev. Cancer9, 123–128 (2009). ArticleCAS Google Scholar
Haigis, M. C. & Sinclair, D. A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol.5, 253–295 (2010). ArticleCAS Google Scholar
Moynihan, K. A. et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab.2, 105–117 (2005). ArticleCAS Google Scholar
Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell6, 759–767 (2007). ArticleCAS Google Scholar
Pfluger, P. T., Herranz, D., Velasco-Miguel, S., Serrano, M. & Tschop, M. H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA105, 9793–9798 (2008). ArticleCAS Google Scholar
Banks, A. S. et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab.8, 333–341 (2008). ArticleCAS Google Scholar
Escande, C. et al. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J. Clin. Invest.120, 545–558 (2010). ArticleCAS Google Scholar
Xu, F. et al. Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/− mice: a role of lipid mobilization and inflammation. Endocrinology151, 2504–2514 (2010). ArticleCAS Google Scholar
Schug, T. T. et al. Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Mol. Cell. Biol.30, 4712–4721 (2010). ArticleCAS Google Scholar
Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G. & Guarente, L. P. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev.23, 2812–2817 (2009). ArticleCAS Google Scholar
Ramadori, G. et al. SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab.12, 78–87 (2010). ArticleCAS Google Scholar
Purushotham, A. et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab.9, 327–338 (2009). ArticleCAS Google Scholar
Chen, D. et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev.22, 1753–1757 (2008). ArticleCAS Google Scholar
Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol.4, e31 (2006). Article Google Scholar
Li, X. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell28, 91–106 (2007). Article Google Scholar
McBurney, M. W. et al. The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol.23, 38–54 (2003). ArticleCAS Google Scholar
Yeung, F. et al. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J.23, 2369–2380 (2004). ArticleCAS Google Scholar
Kemper, J. K. et al. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab.10, 392–404 (2009). ArticleCAS Google Scholar
Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature434, 113–118 (2005). ArticleCAS Google Scholar
Walker, A. K. et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev.24, 1403–1417 (2010). ArticleCAS Google Scholar
Ponugoti, B. et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem.285, 33959–33970 (2010). ArticleCAS Google Scholar
Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature429, 771–776 (2004). ArticleCAS Google Scholar
Kim, H. S. et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab.12, 224–236 (2010). ArticleCAS Google Scholar
Kanfi, Y. et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell9, 162–173 (2010). ArticleCAS Google Scholar
Hou, X. et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem.283, 20015–20026 (2008). ArticleCAS Google Scholar
Lan, F., Cacicedo, J. M., Ruderman, N. & Ido, Y. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem.283, 27628–27635 (2008). ArticleCAS Google Scholar
Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature444, 868–874 (2006). ArticleCAS Google Scholar
Alcendor, R. R. et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res.100, 1512–1521 (2007). ArticleCAS Google Scholar
Zhang, Q. J. et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc. Res.80, 191–199 (2008). ArticleCAS Google Scholar
Stein, S. et al. SIRT1 reduces endothelial activation without affecting vascular function in ApoE−/− mice. Aging (Albany NY)2, 353–360 (2010). ArticleCAS Google Scholar
Stein, S. et al. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur. Heart J.31, 2301–2309 (2010). ArticleCAS Google Scholar
Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell140, 197–208 (2010). ArticleCAS Google Scholar
Kabra, N. et al. SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J. Biol. Chem.284, 18210–18217 (2009). ArticleCAS Google Scholar
Boily, G., He, X. H., Pearce, B., Jardine, K. & McBurney, M. W. SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene28, 2882–2893 (2009). ArticleCAS Google Scholar
Kim, D. et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J.26, 3169–3179 (2007). ArticleCAS Google Scholar
Donmez, G., Wang, D., Cohen, D. E. & Guarente, L. Sirt1 supresses β-amyloid production by activating the α-secretase gene ADAM10. Cell142, 320–332 (2010). ArticleCAS Google Scholar
Boily, G. et al. SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE3, e1759 (2008). Article Google Scholar
Chen, D., Steele, A. D., Lindquist, S. & Guarente, L. Increase in activity during calorie restriction requires Sirt1. Science310, 1641 (2005). ArticleCAS Google Scholar
Qin, W. et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem.281, 21745–21754 (2006). ArticleCAS Google Scholar
Satoh, A. et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci.30, 10220–10232 (2010). ArticleCAS Google Scholar
Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest.120, 1043–1055 (2010). ArticleCAS Google Scholar
Zheng, J. & Ramirez, V. D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br. J. Pharmacol.130, 1115–1123 (2000). ArticleCAS Google Scholar
Gledhill, J. R., Montgomery, M. G., Leslie, A. G. & Walker, J. E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Natl Acad. Sci. USA104, 13632–13637 (2007). ArticleCAS Google Scholar