- Luchsinger, J. A. A work in progress: the metabolic syndrome. Sci. Aging Knowl. Environ. 10, pe19 (2006).
Google Scholar
- Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112, 2735–2752 (2005).
Article PubMed Google Scholar
- Wilson, P. W. F., D’Agostino, R. B., Parise, H., Sullivan, L. & Meigs, J. B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112, 3066–3072 (2005).
Article CAS PubMed Google Scholar
- Weindruch, R. & Walford, R. L. The Retardation of Aging and Disease by Dietary Restriction (Charles C. Thomas, Springfield, Illlinois, 1988).
Google Scholar
- Holliday, R. Food, reproduction, and longevity: is the extended life span of calorie-restricted animals and evolutionary adaptation? BioEssays 10, 125–127 (1989).
Article CAS PubMed Google Scholar
- Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different machanisms. Genes Dev. 13, 2570–2580 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans. Nature 410, 227–230 (2001).
Article ADS CAS PubMed Google Scholar
- Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).
Article ADS CAS PubMed Google Scholar
- Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).
Article ADS CAS PubMed Google Scholar
- Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).
Article ADS CAS PubMed PubMed Central Google Scholar
- Fernandes, G., Yunis, E.J. & Good, R. A. Suppression of adenocarcinoma by the immunological consequences of calorie restriction. Nature 263, 504–507 (1976).
Article ADS CAS PubMed Google Scholar
- Zhu, H., Gou, Q. & Mattson, M. P. Dietary restriction protects hippocampal neurons against the death-promoting action of presenilin-1 mutation. Brain Res. 842, 224–229 (1999).
Article CAS PubMed Google Scholar
- Ingram, D. K., Weindruch, R., Spangler, E. L., Freeman, J. R. & Walford, R. L. Dietary restriction benifits learning and motor performance of aged mice. J. Gerontol. 42, 78–81 (1987).
Article CAS PubMed Google Scholar
- Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997).
Article CAS PubMed Google Scholar
- Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).
Article ADS CAS PubMed Google Scholar
- Lin, S. J., Defessez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).
Article ADS CAS PubMed Google Scholar
- Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002).
Article ADS CAS PubMed Google Scholar
- Lamming, D. W. et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861–1864 (2005).
Article ADS CAS PubMed Google Scholar
- Lin, S.-J., Ford, E., Haigis, M., Liszt, G. & Guarente, L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18, 12–16 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharamyces cerevisiae. Nature 423, 181–185 (2003).
Article ADS CAS PubMed PubMed Central Google Scholar
- Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, e296 (2004).
Article PubMed PubMed Central Google Scholar
- Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1197 (2005).
Article ADS CAS PubMed Google Scholar
- Rogina, B., Helfand, S. L. & Frankel, S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298, 1745 (2002).
Article CAS PubMed Google Scholar
- Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).
Article ADS CAS PubMed PubMed Central Google Scholar
- Wang, Y. & Tissenbaum, H. A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 127, 48–56 (2006).
Article CAS PubMed Google Scholar
- Chen, D., Steele, A. D., Lindquist, S. & Guarente, L. Increase in activity during calorie restriction requires Sirt1. Science 310, 1641 (2005).
Article CAS PubMed Google Scholar
- Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).
Article CAS PubMed Google Scholar
- Vaziri, H. et al. hSIR2 SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).
Article CAS PubMed Google Scholar
- Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).
Article CAS PubMed Google Scholar
- Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).
Article ADS CAS PubMed Google Scholar
- Cohen, H. Y. et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls bax-mediated apoptosis. Mol. Cell 13, 627–638 (2004).
Article CAS PubMed Google Scholar
- Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).
Article ADS CAS PubMed Google Scholar
- Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).
Article ADS CAS PubMed PubMed Central Google Scholar
- Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol. 4, e31 (2005).
Article PubMed PubMed Central Google Scholar
- Moynihan, K. A. et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2, 105–117 (2005).
Article CAS PubMed Google Scholar
- Kitamura, Y. I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and Mafa induction. Cell Metab. 2, 153–163 (2005).
Article CAS PubMed Google Scholar
- Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).
Article ADS CAS PubMed Google Scholar
- Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).
Article CAS PubMed Google Scholar
- Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).
Article CAS PubMed Google Scholar
- Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signaling pathways: insights into insulin action. Nature Rev. Mol. Cell Biol. 7, 85–96 (2006).
Article CAS Google Scholar
- Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).
Article ADS CAS PubMed Google Scholar
- Hagopian, K., Ramsey, J. J. & Weindruch, R. Influence of age and calorie restriction on liver glycolytic enxyme activities and metabolite concentrations in mice. Exp. Gerontol. 38, 253–266 (2003).
Article CAS PubMed Google Scholar
- Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. & Feinberg, A. P. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl Acad. Sci. USA 99, 13653–13658 (2002).
Article ADS CAS PubMed PubMed Central Google Scholar
- Schwer, B., North, B. J., Frye, R. A., Ott, M. & Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158, 647–657 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β-cells. Cell 126, 941–956 (2006).
Article CAS PubMed Google Scholar
- Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synsthetase2. Proc. Natl Acad. Sci. USA 103, 10224–10229 (2006).
Article ADS CAS PubMed PubMed Central Google Scholar
- Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).
Article ADS CAS PubMed PubMed Central Google Scholar
- Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D. & Escalante-Semerena, J. C. Sir2-dependent activationof acetyl-CoA synthetase by deacetylation of active lysine. Science 298, 2390 (2002).
Article ADS CAS PubMed Google Scholar
- Buckley, B. M. & Williamson, D. H. Origins of blood acetate in the rat. Biochem. J. 166, 539–545 (1977).
Article CAS PubMed PubMed Central Google Scholar
- Fujino, T., Kondo, J., Ishikawa, M., Morikawa, K. & Yamamoto, T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276, 11420–11426 (2001).
Article CAS PubMed Google Scholar
- Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).
Article CAS PubMed Google Scholar
- Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–4635 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Ford, E., Voit, R., Liszt, G., Grummt, I. & Guarente, L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075–1081 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Muth, V., Nadaud, S., Grummt, I. & Voit, R. Acetylation of TAFI68, a subunit of TIF-IB/SLI, activates RNA polymerase I transcription. EMBO J. 20, 1353–1362 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).
Article CAS PubMed Google Scholar
- Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).
Article PubMed Google Scholar
- Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267–273 (2003).
Article ADS CAS PubMed Google Scholar
- Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466–8471 (2003).
Article ADS CAS PubMed PubMed Central Google Scholar
- Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423, 550–555 (2003).
Article ADS CAS PubMed Google Scholar
- Lin, J. et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120, 261–273 (2005).
Article CAS PubMed Google Scholar
- Wolfrum, C. & Stoffel, M. Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 3, 99–110 (2006).
Article CAS PubMed Google Scholar
- Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J. & Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432, 1027–1032 (2004).
Article ADS CAS PubMed Google Scholar
- Kahn, B. K., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).
Article CAS PubMed Google Scholar
- Hardie, D. G., Scott, J. W., Pan, D. A. & Hudson, E. R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546, 113–120 (2003).
Article CAS PubMed Google Scholar
- Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and Mo25α/β are upstream kinases in the AMP-activated protein kinase cascade. J.Biol. 2, 1–16 (2003).
Article Google Scholar
- Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).
Article CAS PubMed Google Scholar
- Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).
Article ADS CAS PubMed PubMed Central Google Scholar
- Birnbaum, M. J. Activating AMP-activated protein kinase without AMP. Mol. Cell 19, 289–296 (2005).
Article CAS PubMed Google Scholar
- Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. & Lee, W. M. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34, 223–227 (2006).
Article CAS PubMed Google Scholar
- Koo, S.-H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1114 (2005).
Article ADS CAS PubMed Google Scholar
- Canettieri, G. et al. Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling. Cell Metab. 2, 331–338 (2005).
Article CAS PubMed Google Scholar
- Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).
Article ADS CAS PubMed PubMed Central Google Scholar
- Bauer, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).
Article ADS Google Scholar
- Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1–14 (2006).
Article Google Scholar