Applications of the CRISPR–Cas9 system in cancer biology (original) (raw)
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature317, 230–234 (1985). CASPubMed Google Scholar
Thomas, K. R., Folger, K. R. & Capecchi, M. R. High frequency targeting of genes to specific sites in the mammalian genome. Cell44, 419–428 (1986). CASPubMed Google Scholar
Mansour, S. L., Thomas, K. R. & Capecchi, M. R. Disruption of the proto-oncogene _Int_-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature336, 348–352 (1988). CASPubMed Google Scholar
Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer7, 645–658 (2007). CASPubMed Google Scholar
Rudin, N., Sugarman, E. & Haber, J. E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics122, 519–534 (1989). CASPubMedPubMed Central Google Scholar
Plessis, A., Perrin, A., Haber, J. E. & Dujon, B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics130, 451–460 (1992). CASPubMedPubMed Central Google Scholar
Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl Acad. Sci. USA91, 6064–6068 (1994). CASPubMedPubMed Central Google Scholar
Choulika, A., Perrin, A., Dujon, B. & Nicolas, J. F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol.15, 1968–1973 (1995). CASPubMedPubMed Central Google Scholar
Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002). CASPubMedPubMed Central Google Scholar
Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science300, 764 (2003). CASPubMed Google Scholar
Urnov, F. D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nat. Cell Biol.435, 646–651 (2005). CAS Google Scholar
Christian, M. et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics186, 757–761 (2010). CASPubMedPubMed Central Google Scholar
Li, T. et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res.39, 359–372 (2011). PubMed Google Scholar
Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol.29, 143–148 (2011). CASPubMed Google Scholar
Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat. Biotechnol.29, 731–734 (2011). CASPubMedPubMed Central Google Scholar
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet.11, 636–646 (2010). CASPubMed Google Scholar
Joung, J. K. & Sander, J. D. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol.14, 49–55 (2013). CASPubMed Google Scholar
Cho, S. W., Kim, S., Kim, J. M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol.31, 230–232 (2013). CASPubMed Google Scholar
Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods10, 1116–1121 (2013). CASPubMedPubMed Central Google Scholar
Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA110, 15644–15649 (2013). CASPubMedPubMed Central Google Scholar
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science346, 1258096 (2014). PubMed Google Scholar
Denicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature475, 106–109 (2011). CASPubMedPubMed Central Google Scholar
Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res.24, 1012–1019 (2014). CASPubMedPubMed Central Google Scholar
Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife3, e04766 (2014). PubMedPubMed Central Google Scholar
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science343, 84–87 (2014). CASPubMed Google Scholar
Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell157, 1262–1278 (2014). CASPubMedPubMed Central Google Scholar
Heyer, J., Kwong, L. N., Lowe, S. W. & Chin, L. Non-germline genetically engineered mouse models for translational cancer research. Nat. Rev. Cancer10, 470–480 (2010). CASPubMedPubMed Central Google Scholar
Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med.14, 1351–1356 (2008). CASPubMedPubMed Central Google Scholar
Chen, Z. et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature483, 613–617 (2012). CASPubMedPubMed Central Google Scholar
Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell153, 910–918 (2013). CASPubMedPubMed Central Google Scholar
Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell154, 1370–1379 (2013). CASPubMedPubMed Central Google Scholar
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev.15, 3243–3248 (2001). CASPubMedPubMed Central Google Scholar
Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell4, 111–120 (2003). CASPubMed Google Scholar
Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature513, 120–123 (2014). CASPubMedPubMed Central Google Scholar
Dow, L. E. & Lowe, S. W. Life in the fast lane: mammalian disease models in the genomics era. Cell148, 1099–1109 (2012). CASPubMedPubMed Central Google Scholar
Chen, C. et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell25, 652–665 (2014). PubMedPubMed Central Google Scholar
Heckl, D. et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR–Cas9 genome editing. Nat. Biotechnol.32, 941–946 (2014). CASPubMedPubMed Central Google Scholar
Jackson, E. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res.65, 10280–10288 (2005). CASPubMed Google Scholar
Sanchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature516, 428–431 (2014). CASPubMedPubMed Central Google Scholar
Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature516, 423–427 (2014). CASPubMedPubMed Central Google Scholar
Soda, M. et al. Identification of the transforming EML4_–_ALK fusion gene in non-small-cell lung cancer. Nature448, 561–566 (2007). CASPubMed Google Scholar
Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med.368, 2385–2394 (2013). CASPubMed Google Scholar
Blasco, R. B. et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep.9, 1219–1227 (2014). CASPubMed Google Scholar
Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol.33, 73–80 (2015). CASPubMed Google Scholar
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell159, 635–646 (2014). CASPubMedPubMed Central Google Scholar
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell154, 442–451 (2013). CASPubMedPubMed Central Google Scholar
Whitworth, K. M. et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from _in vitro_-derived oocytes and embryos. Biol. Reprod.91, 78 (2014). PubMedPubMed Central Google Scholar
Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell156, 836–843 (2014). CASPubMed Google Scholar
Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science346, 1480–1486 (2014). CASPubMedPubMed Central Google Scholar
Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol.32, 551–553 (2014). CASPubMedPubMed Central Google Scholar
Sadelain, M., Brentjens, R. & Rivière, I. The basic principles of chimeric antigen receptor design. Cancer Discov.3, 388–398 (2013). CASPubMedPubMed Central Google Scholar
Sadelain, M., Papapetrou, E. P. & Bushman, F. D. Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer12, 51–58 (2012). CAS Google Scholar
Bikard, D. et al. Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res.41, 7429–7437 (2013). CASPubMedPubMed Central Google Scholar
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell159, 647–661 (2014). CASPubMedPubMed Central Google Scholar
Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol.31, 833–838 (2013). CASPubMedPubMed Central Google Scholar
Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR–Cas9-based transcription factors. Nat. Methods10, 973–976 (2013). CASPubMedPubMed Central Google Scholar
Cheng, A. W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res.23, 1163–1171 (2013). CASPubMedPubMed Central Google Scholar
Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature517, 583–588 (2014). PubMedPubMed Central Google Scholar
Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell160, 339–350 (2015). CASPubMed Google Scholar
Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science343, 80–84 (2014). CASPubMed Google Scholar
Koike-Yusa, H., Li, Y., Tan, E.-P., Velasco-Herrera, M. D. C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol.32, 267–273 (2013). PubMed Google Scholar
Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature509, 487–491 (2014). CASPubMed Google Scholar
Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell160, 1246–1260 (2015). CASPubMedPubMed Central Google Scholar
Matano, M. et al. Modeling colorectal cancer using CRISPR–Cas9-mediated engineering of human intestinal organoids. Nat. Med.21, 256–262 (2015). CASPubMed Google Scholar
Mansour, M. R. et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science346, 1373–1377 (2014). CASPubMedPubMed Central Google Scholar
Choi, P. S. & Meyerson, M. Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun.5, 3728 (2014). CASPubMed Google Scholar
Torres, R. et al. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system. Nat. Commun.5, 3964 (2014). CASPubMed Google Scholar
Ghezraoui, H. et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol. Cell55, 829–842 (2014). CASPubMedPubMed Central Google Scholar
Xiao, A. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res.41, e141 (2013). CASPubMedPubMed Central Google Scholar
Canver, M. C. et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J. Biol. Chem.289, 21312–21324 (2014). PubMedPubMed Central Google Scholar
Han, J. et al. Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biol.11, 829–835 (2014). CASPubMedPubMed Central Google Scholar
Ho, T.-T. et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res.43, e17 (2014). PubMedPubMed Central Google Scholar
Essletzbichler, P. et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res.24, 2059–2065 (2014). CASPubMedPubMed Central Google Scholar