Scagliotti, G. et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J. Clin. Oncol.28, 1835–1842 (2010). ArticleCASPubMed Google Scholar
Pao, W. & Girard, N. New driver mutations in non-small-cell lung cancer. Lancet Oncol.12, 175–180 (2011). ArticleCASPubMed Google Scholar
Olaussen, K. A. et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med.355, 983–991 (2006). ArticleCASPubMed Google Scholar
Jalal, S., Earley, J. N. & Turchi, J. J. DNA repair: from genome maintenance to biomarker and therapeutic target. Clin. Cancer Res.17, 6973–6984 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pfeifer, G. P. et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene21, 7435–7451 (2002). ArticleCASPubMed Google Scholar
Zhang, N., Liu, X., Li, L. & Legerski, R. Double-strand breaks induce homologous recombinational repair of interstrand cross-links via cooperation of MSH2, ERCC1-XPF, REV3, and the Fanconi anemia pathway. DNA repair (Amst.)6, 1670–1678 (2007). ArticleCAS Google Scholar
Chen, C. C., Kennedy, R. D., Sidi, S., Look, A. T. & D'Andrea, A. CHK1 inhibition as a strategy for targeting Fanconi Anemia (FA) DNA repair pathway deficient tumors. Mol. Cancer8, 24 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer8, 193–204 (2008). ArticleCASPubMed Google Scholar
Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol.2, a001008 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Peltomäki, P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol.21, 1174–1179 (2003). ArticlePubMedCAS Google Scholar
Birch, J. M. et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene20, 4621–4628 (2001). ArticleCASPubMed Google Scholar
Wikenheiser-Brokamp, K. A. Retinoblastoma regulatory pathway in lung cancer. Curr. Mol. Med.6, 783–793 (2006). CASPubMed Google Scholar
Fagbemi, A. F., Orelli, B. & Schärer, O. D. Regulation of endonuclease activity in human nucleotide excision repair. DNA repair (Amst.)10, 722–729 (2011). ArticleCAS Google Scholar
Altaha, R., Liang, X., Yu, J. J. & Reed, E. Excision repair cross complementing-group 1: gene expression and platinum resistance. Int. J. Mol. Med.14, 959–970 (2004). CASPubMed Google Scholar
Simon, G. R., Sharma, S., Cantor, A., Smith, P. & Bepler, G. ERCC1 expression is a predictor of survival in resected patients with non-small cell lung cancer. Chest127, 978–983 (2005). ArticlePubMed Google Scholar
Olaussen, K. A., Fouret, P. & Kroemer, G. ERCC1-specific immunostaining in non-small-cell lung cancer. N. Engl. J. Med.357, 1559–1561 (2007). ArticleCASPubMed Google Scholar
Bepler, G. et al. ERCC1 and RRM1 in the international adjuvant lung trial by automated quantitative in situ analysis. Am. J. Pathol.178, 69–78 (2011). ArticlePubMedPubMed Central Google Scholar
Chen, S., Zhang, J., Wang, R., Luo, X. & Chen, H. The platinum-based treatments for advanced non-small cell lung cancer, is low/negative ERCC1 expression better than high/positive ERCC1 expression? A meta-analysis. Lung Cancer70, 63–70 (2010). ArticlePubMed Google Scholar
Cobo, M. et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J. Clin. Oncol.25, 2747–2754 (2007). ArticleCASPubMed Google Scholar
Lord, R. V. et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin. Cancer Res.8, 2286–2291 (2002). CASPubMed Google Scholar
Besse, B. et al. ERCC1 influence on the incidence of brain metastases in patients with non-squamous NSCLC treated with adjuvant cisplatin-based chemotherapy. Ann. Oncol.22, 575–581 (2011). ArticleCASPubMed Google Scholar
Zhou, W. et al. Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin. Cancer Res.10, 4939–4943 (2004). ArticleCASPubMed Google Scholar
Murphy, C. G. & Moynahan, M. E. BRCA gene structure and function in tumor suppression: a repair-centric perspective. Cancer J.16, 39–47 (2010). ArticleCASPubMed Google Scholar
Graeser, M. et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res.16, 6159–6168 (2010). ArticleCASPubMedPubMed Central Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleCASPubMed Google Scholar
Shaheen, M., Allen, C., Nickoloff, J. A. & Hromas, R. Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood117, 6074–6082 (2011). ArticleCASPubMed Google Scholar
Rehman, F. L., Lord, C. J. & Ashworth, A. Synthetic lethal approaches to breast cancer therapy. Nat. Rev. Clin. Oncol.7, 718–724 (2010). ArticleCASPubMed Google Scholar
Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361, 123–134 (2009). ArticleCASPubMed Google Scholar
Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nat. Rev. Cancer4, 814–819 (2004). ArticleCASPubMed Google Scholar
Lee, M. N. et al. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin. Cancer Res.13, 832–838 (2007). ArticleCASPubMed Google Scholar
Marsit, C. J. et al. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene23, 1000–1004 (2004). ArticleCASPubMed Google Scholar
McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res.66, 8109–8115 (2006). ArticleCASPubMed Google Scholar
Jin, G. et al. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer69, 279–283 (2010). ArticlePubMed Google Scholar
Powell, C. et al. Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat. Rev.36, 566–575 (2010). ArticleCASPubMed Google Scholar
Liu, S. K. et al. A novel poly(ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes malignant human cell lines under hypoxia. Radiother. Oncol.88, 258–268 (2008). ArticleCASPubMed Google Scholar
Albert, J. M. et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin. Cancer Res.13, 3033–3042 (2007). ArticleCASPubMed Google Scholar
Donawho, C. K. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res.13, 2728–2737 (2007). ArticleCASPubMed Google Scholar
Miknyoczki, S. J. et al. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol. Cancer Ther.2, 371–382 (2003). CASPubMed Google Scholar
Paul, I. et al. PARP inhibition induces BAX/BAK-independent synthetic lethality of BRCA1-deficient non-small cell lung cancer. J. Pathol.224, 564–574 (2011). ArticleCASPubMed Google Scholar
Bartolucci, R. et al. XPG mRNA expression levels modulate prognosis in resected non-small-cell lung cancer in conjunction with BRCA1 and ERCC1 expression. Clin. Lung Cancer10, 47–52 (2009). ArticleCASPubMed Google Scholar
Quinn, J. E. et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res.63, 6221–6228 (2003). CAS Google Scholar
Chabalier, C. et al. BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle5, 1001–1007 (2006). ArticleCASPubMed Google Scholar
Stordal, B. & Davey, R. A systematic review of genes involved in the inverse resistance relationship between cisplatin and paclitaxel chemotherapy: role of BRCA1. Curr. Cancer Drug Targets9, 354–365 (2009). ArticleCASPubMed Google Scholar
Wang, L. et al. ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel. BMC Cancer8, 97 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Taron, M. et al. BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum. Mol. Genet.13, 2443–2449 (2004). ArticleCASPubMed Google Scholar
Boukovinas, I. et al. Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients. PLoS ONE3, e3695 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Cobo, M. et al. Spanish customized adjuvant trial (SCAT) based on BRCA1 mRNA levels [abstract]. J. Clin. Oncol.26 (Suppl. 15), a7533 (2008). Article Google Scholar
Rosell, R. et al. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression. PLoS ONE4, e5133 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Yan, J. et al. The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response. Cancer Res.67, 6647–6656 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol.7, 335–346 (2006). ArticleCASPubMed Google Scholar
Kouso, H. et al. Expression of mismatch repair proteins, hMLH1/hMSH2, in non-small cell lung cancer tissues and its clinical significance. J. Surg. Oncol.98, 377–383 (2008). ArticlePubMed Google Scholar
Cooper, W. A. et al. Prognostic significance of DNA repair proteins MLH1, MSH2 and MGMT expression in non-small-cell lung cancer and precursor lesions. Histopathology52, 613–622 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hsu, H. S. et al. Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin. Cancer Res.11, 5410–5416 (2005). ArticleCASPubMed Google Scholar
Scartozzi, M. et al. Mismatch repair system (MMR) status correlates with response and survival in non-small cell lung cancer (NSCLC) patients. Lung Cancer53, 103–109 (2006). ArticlePubMed Google Scholar
Hsu, H. S., Lee, I. H., Hsu, W. H., Kao, W. T. & Wang, Y. C. Polymorphism in the hMSH2 gene (gISV12–16T > C) is a prognostic factor in non-small cell lung cancer. Lung Cancer58, 123–130 (2007). ArticlePubMed Google Scholar
Kamal, N. S. et al. MutS homologue 2 and the long-term benefit of adjuvant chemotherapy in lung cancer. Clin. Cancer Res.16, 1206–1215 (2010). ArticleCASPubMed Google Scholar
Martin, S. A. et al. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell17, 235–248 (2009). ArticleCAS Google Scholar
Martin, S. A. et al. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol. Med.1, 323–337 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kanellis, G. et al. Expression of DNA mismatch repair gene MSH2 in cytological material from lung cancer patients. Diagn. Cytopathol.34, 463–466 (2006). ArticlePubMed Google Scholar
Wang, Y. C. et al. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J. Clin. Invest.111, 887–895 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nat. Rev. Mol. Cell Biol.4, 712–720 (2003). ArticleCASPubMed Google Scholar
Auckley, D. H. et al. Reduced DNA-dependent protein kinase activity is associated with lung cancer. Carcinogenesis22, 723–727 (2001). ArticleCASPubMed Google Scholar
Eriksson, A., Yachnin, J., Lewensohn, R. & Nilsson, A. DNA-dependent protein kinase is inhibited by trifluoperazine. Biochem. Biophys. Res. Commun.283, 726–731 (2001). ArticleCASPubMed Google Scholar
Izzard, R. A., Jackson, S. P. & Smith, G. C. Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res.59, 2581–2586 (1999). CASPubMed Google Scholar
Boulton, S., Kyle, S. & Durkacz, B. W. Mechanisms of enhancement of cytotoxicity in etoposide and ionising radiation-treated cells by the protein kinase inhibitor wortmannin. Eur. J. Cancer36, 535–541 (2000). ArticleCASPubMed Google Scholar
Zhao, Y. et al. Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res.66, 5354–5362 (2006). ArticleCASPubMed Google Scholar
Zheng, Z. et al. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N. Engl. J. Med.356, 800–808 (2007). ArticleCASPubMed Google Scholar
Tooker, P., Yen, W. C., Ng, S. C., Negro-Vilar, A. & Hermann, T. W. Bexarotene (LGD1069, Targretin), a selective retinoid X receptor agonist, prevents and reverses gemcitabine resistance in NSCLC cells by modulating gene amplification. Cancer Res.67, 4425–4433 (2007). ArticleCASPubMed Google Scholar
Kwon, W. S. et al. Ribonucleotide reductase M1 (RRM1) 2464G>A polymorphism shows an association with gemcitabine chemosensitivity in cancer cell lines. Pharmacogenet. Genomics16, 429–438 (2006). ArticleCASPubMed Google Scholar
Davidson, J. D. et al. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res.64, 3761–3766 (2004). ArticleCASPubMed Google Scholar
Bergman, A. M. et al. In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res.65, 9510–9516 (2005). ArticleCASPubMed Google Scholar
Bepler, G. et al. Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer. J. Thorac. Oncol.3, 1112–1118 (2008). ArticlePubMedPubMed Central Google Scholar
Ceppi, P. et al. ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann. Oncol.17, 1818–1825 (2006). ArticleCASPubMed Google Scholar
Rosell, R. et al. Transcripts in pretreatment biopsies from a three-arm randomized trial in metastatic non-small-cell lung cancer. Oncogene22, 3548–3553 (2003). ArticleCASPubMed Google Scholar
Rosell, R. et al. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin. Cancer Res.10, 1318–1325 (2004). ArticleCASPubMed Google Scholar
Souglakos, J. et al. Ribonucleotide reductase subunits M1 and M2 mRNA expression levels and clinical outcome of lung adenocarcinoma patients treated with docetaxel/gemcitabine. Br. J. Cancer98, 1710–1715 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rosell, R. et al. Gene expression as a predictive marker of outcome in stage IIB-IIIA-IIIB non-small cell lung cancer after induction gemcitabine-based chemotherapy followed by resectional surgery. Clin. Cancer Res.10, 4215s–4219s (2004). ArticleCASPubMed Google Scholar
Simon, G. et al. Feasibility and efficacy of molecular analysis-directed individualized therapy in advanced non-small-cell lung cancer. J. Clin. Oncol.25, 2741–2746 (2007). ArticleCASPubMed Google Scholar
Chiappori, A. et al. Phase II study of first-line sequential chemotherapy with gemcitabine-carboplatin followed by docetaxel in patients with advanced non-small cell lung cancer. Oncology68, 382–390 (2005). ArticleCASPubMed Google Scholar
Ceppi, P., Papotti, M. & Scagliotti, G. New strategies for targeting the therapy of NSCLC: the role of ERCC1 and TS. Adv. Med. Sci.55, 22–25 (2010). ArticleCASPubMed Google Scholar
Rothschild, S. I., Gautschi, O., Lara, P. N. Jr, Mack, P. C. & Gandara, D. R. Biomarkers of DNA repair and related pathways: significance in non-small cell lung cancer. Curr. Opin. Oncol.23, 150–157 (2011). ArticleCASPubMed Google Scholar
Dzagnidze, A. et al. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J. Neurosci.27, 9451–9457 (2007). ArticleCASPubMedPubMed Central Google Scholar
Su, Z. et al. A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J. Mol. Diagn.13, 74–84 (2011). ArticleCASPubMedPubMed Central Google Scholar
Orlow, I. et al. DNA damage and repair capacity in patients with lung cancer: prediction of multiple primary tumors. J. Clin. Oncol.26, 3560–3566 (2008). ArticlePubMed Google Scholar
Gorlova, O. Y. et al. DNA repair capacity and lung cancer risk in never smokers. Cancer Epidemiol. Biomarkers Prev.17, 1322–1328 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wang, L. E. et al. DNA repair capacity in peripheral lymphocytes predicts survival of patients with non-small-cell lung cancer treated with first-line platinum-based chemotherapy. J. Clin. Oncol.29, 4121–4128 (2011). ArticlePubMedPubMed Central Google Scholar
Camps, C., Sirera, R., Iranzo, V., Taron, M. & Rosell, R. Gene expression and polymorphisms of DNA repair enzymes: cancer susceptibility and response to chemotherapy. Clin. Lung Cancer8, 369–375 (2007). ArticleCASPubMed Google Scholar
Gurubhagavatula, S. et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J. Clin. Oncol.22, 2594–2601 (2004). ArticleCASPubMed Google Scholar
de las Peñas, R. et al. Polymorphisms in DNA repair genes modulate survival in cisplatin/gemcitabine-treated non-small-cell lung cancer patients. Ann. Oncol.17, 668–675 (2006). ArticlePubMed Google Scholar
Matakidou, A. et al. Genetic variation in the DNA repair genes is predictive of outcome in lung cancer. Hum. Mol. Genet.16, 2333–2340 (2007). ArticleCASPubMed Google Scholar
Shiraishi, K. et al. Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell lung cancer. J. Clin. Oncol.28, 4945–4952 (2010). ArticleCASPubMed Google Scholar
Lara, P. N. Jr et al. The cyclin-dependent kinase inhibitor UCN-01 plus cisplatin in advanced solid tumors: a California cancer consortium phase I pharmacokinetic and molecular correlative trial. Clin. Cancer Res.11, 4444–4450 (2005). ArticleCASPubMed Google Scholar
Perez, R. P. et al. Modulation of cell cycle progression in human tumors: a pharmacokinetic and tumor molecular pharmacodynamic study of cisplatin plus the CHK1 inhibitor UCN-01 (NSC 638850). Clin. Cancer Res.12, 7079–7085 (2006). ArticleCASPubMed Google Scholar
Edelman, M. J. et al. Phase I and pharmacokinetic study of 7-hydroxystaurosporine and carboplatin in advanced solid tumors. Clin. Cancer Res.13, 2667–2674 (2007). ArticleCASPubMed Google Scholar
Fink, D. et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res.56, 4881–4886 (1996). CASPubMed Google Scholar
Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res.18, 134–147 (2008). ArticleCASPubMed Google Scholar