Principles for targeting RNA with drug-like small molecules (original) (raw)
Clamp, M. et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl Acad. Sci. USA104, 19428–19433 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ezkurdia, I. et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum. Mol. Genet.23, 5866–5878 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov.1, 727–730 (2002). ArticleCASPubMed Google Scholar
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov.5, 993–996 (2006). ArticleCASPubMed Google Scholar
Matsui, M. & Corey, D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug Discov.16, 167–179 (2017). ArticleCASPubMed Google Scholar
Adams, B. D., Parsons, C., Walker, L., Zhang, W. C. & Slack, F. J. Targeting noncoding RNAs in disease. J. Clin. Invest.127, 761–771 (2017). ArticlePubMedPubMed Central Google Scholar
Liang, X.-H. et al. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol.34, 875–880 (2016). ArticleCASPubMed Google Scholar
Liang, X.-H. et al. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res.45, 9528–9546 (2017). ArticleCASPubMedPubMed Central Google Scholar
Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab.27, 714–739 (2018). ArticleCASPubMed Google Scholar
Fellmann, C., Gowen, B. G., Lin, P.-C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat. Rev. Drug Discov.16, 89–100 (2017). ArticleCASPubMed Google Scholar
McCown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E. & Breaker, R. R. Riboswitch diversity and distribution. RNA23, 995–1011 (2017). ArticleCASPubMedPubMed Central Google Scholar
Wilson, D. N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol.12, 35–48 (2014). ArticleCASPubMed Google Scholar
Childs-Disney, J. L. & Disney, M. D. Approaches to validate and manipulate RNA targets with small molecules in cells. Annu. Rev. Pharmacol. Toxicol.56, 123–140 (2016). ArticleCASPubMed Google Scholar
Thomas, J. R. & Hergenrother, P. J. Targeting RNA with small molecules. Chem. Rev.108, 1171–1224 (2008). ArticleCASPubMed Google Scholar
Aboul-ela, F. Strategies for the design of RNA-binding small molecules. Future Med. Chem.2, 93–119 (2010). ArticleCASPubMed Google Scholar
Guan, L. & Disney, M. D. Recent advances in developing small molecules targeting RNA. ACS Chem. Biol.7, 73–86 (2012). ArticleCASPubMed Google Scholar
Connelly, C. M., Moon, M. H. & Schneekloth, J. S. The emerging role of RNA as a therapeutic target for small molecules. Cell Chem. Biol.23, 1077–1090 (2016). ArticleCASPubMedPubMed Central Google Scholar
Morgan, B. S., Forte, J. E., Culver, R. N., Zhang, Y. & Hargrove, A. E. Discovery of key physicochemical, structural, and spatial properties of RNA-targeted bioactive ligands. Angew. Chem. Int. Ed. Engl.56, 13498–13502 (2017). ArticleCASPubMedPubMed Central Google Scholar
Rizvi, N. F. & Smith, G. F. RNA as a small molecule druggable target. Bioorg. Med. Chem. Lett.27, 5083–5088 (2017). ArticleCASPubMed Google Scholar
Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem.4, 90–98 (2012). ArticleCASPubMedPubMed Central Google Scholar
Moellering, R. C. Linezolid: the first oxazolidinone antimicrobial. Ann. Intern. Med.138, 135–142 (2003). ArticleCASPubMed Google Scholar
Wilson, D. N. et al. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc. Natl Acad. Sci. USA105, 13339–13344 (2008). ArticlePubMedPubMed Central Google Scholar
Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature526, 672–677 (2015). ArticleCASPubMed Google Scholar
Howe, J. A. et al. Atomic resolution mechanistic studies of ribocil: a highly selective unnatural ligand mimic of the E. coli FMN riboswitch. RNA Biol.13, 946–954 (2016). ArticlePubMedPubMed Central Google Scholar
Palacino, J. et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol.11, 511–517 (2015). ArticleCASPubMed Google Scholar
Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun.8, 1476 (2017). ArticleCASPubMedPubMed Central Google Scholar
Kondo, Y., Oubridge, C., van Roon, A.-M. M. & Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. eLife4, 360 (2015). Article Google Scholar
Calder, A. N., Androphy, E. J. & Hodgetts, K. J. Small molecules in development for the treatment of spinal muscular atrophy. J. Med. Chem.59, 10067–10083 (2016). ArticleCASPubMedPubMed Central Google Scholar
Seth, P. P. et al. SAR by MS: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J. Med. Chem.48, 7099–7102 (2005). ArticleCASPubMed Google Scholar
Mei, H. Y. et al. Discovery of selective, small-molecule inhibitors of RNA complexes—I. The Tat protein/TAR RNA complexes required for HIV-1 transcription. Bioorg. Med. Chem.5, 1173–1184 (1997). ArticleCASPubMed Google Scholar
Prado, S. et al. Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen. Biochem. Pharmacol.107, 14–28 (2016). ArticleCASPubMed Google Scholar
Sztuba-Solinska, J. et al. Identification of biologically active, HIV TAR RNA-binding small molecules using small molecule microarrays. J. Am. Chem. Soc.136, 8402–8410 (2014). ArticleCASPubMedPubMed Central Google Scholar
Joly, J.-P. et al. Artificial nucleobase-amino acid conjugates: a new class of TAR RNA binding agents. Chemistry20, 2071–2079 (2014). ArticleCASPubMed Google Scholar
Carnevali, M., Parsons, J., Wyles, D. L. & Hermann, T. A modular approach to synthetic RNA binders of the hepatitis C virus internal ribosome entry site. Chembiochem11, 1364–1367 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hilimire, T. A. et al. HIV-1 frameshift RNA-targeted triazoles inhibit propagation of replication-competent and multi-drug-resistant HIV in human cells. ACS Chem. Biol.12, 1674–1682 (2017). ArticleCASPubMedPubMed Central Google Scholar
Barros, S. A., Yoon, I. & Chenoweth, D. M. Modulation of the E. coli rpoH Temperature sensor with triptycene-based small molecules. Angew. Chem. Int. Ed. Engl.55, 8258–8261 (2016). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, L. et al. Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1. J. Am. Chem. Soc.137, 14180–14189 (2015). ArticleCASPubMed Google Scholar
Luu, L. M. et al. A potent inhibitor of protein sequestration by expanded triplet (CUG) repeats that shows phenotypic improvements in a Drosophila model of myotonic dystrophy. ChemMedChem11, 1428–1435 (2016). ArticleCASPubMedPubMed Central Google Scholar
Lee, M.-K. et al. A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication. Chem. Commun. (Camb.)50, 368–370 (2014). ArticleCAS Google Scholar
Park, S.-J., Kim, Y.-G. & Park, H.-J. Identification of RNA pseudoknot-binding ligand that inhibits the -1 ribosomal frameshifting of SARS-coronavirus by structure-based virtual screening. J. Am. Chem. Soc.133, 10094–10100 (2011). ArticleCASPubMed Google Scholar
Stelzer, A. C. et al. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat. Chem. Biol.7, 553–559 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jin, L., Wang, W. & Fang, G. Targeting protein-protein interaction by small molecules. Annu. Rev. Pharmacol. Toxicol.54, 435–456 (2014). ArticleCASPubMed Google Scholar
Doak, B. C., Over, B., Giordanetto, F. & Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol.21, 1115–1142 (2014). ArticleCASPubMed Google Scholar
Matsson, P., Doak, B. C., Over, B. & Kihlberg, J. Cell permeability beyond the rule of 5. Adv. Drug Deliv. Rev.101, 42–61 (2016). ArticleCASPubMed Google Scholar
Zimmerman, S. C. A journey in bioinspired supramolecular chemistry: from molecular tweezers to small molecules that target myotonic dystrophy. Beilstein J. Org. Chem.12, 125–138 (2016). ArticleCASPubMedPubMed Central Google Scholar
Mustoe, A. M. et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing. Cell173, 181–195.e18 (2018). ArticleCASPubMedPubMed Central Google Scholar
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods11, 959–965 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mauger, D. M. et al. Functionally conserved architecture of hepatitis C virus RNA genomes. Proc. Natl Acad. Sci. USA112, 3692–3697 (2015). CASPubMedPubMed Central Google Scholar
Pirakitikulr, N., Kohlway, A., Lindenbach, B. D. & Pyle, A. M. The coding region of the HCV genome contains a network of regulatory RNA structures. Mol. Cell62, 111–120 (2016). ArticleCASPubMedPubMed Central Google Scholar
Villordo, S. M., Carballeda, J. M., Filomatori, C. V. & Gamarnik, A. V. RNA structure duplications and flavivirus host adaptation. Trends Microbiol.24, 270–283 (2016). ArticleCASPubMedPubMed Central Google Scholar
Kutchko, K. M. et al. Structural divergence creates new functional features in alphavirus genomes. Nucleic Acids Res.46, 3657–3670 (2018). ArticleCASPubMedPubMed Central Google Scholar
Cencig, S. et al. Mapping and characterization of the minimal internal ribosome entry segment in the human c-myc mRNA 5′ untranslated region. Oncogene23, 267–277 (2004). ArticleCASPubMed Google Scholar
Chakraborty, S., Mehtab, S., Patwardhan, A. & Krishnan, Y. Pri-miR-17-92a transcript folds into a tertiary structure and autoregulates its processing. RNA18, 1014–1028 (2012). ArticleCASPubMedPubMed Central Google Scholar
Smola, M. J. et al. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl Acad. Sci. USA113, 10322–10327 (2016). ArticleCASPubMedPubMed Central Google Scholar
Ball, C. B., Solem, A. C., Meganck, R. M., Laederach, A. & Ramos, S. B. V. Impact of RNA structure on ZFP36L2 interaction with luteinizing hormone receptor mRNA. RNA23, 1209–1223 (2017). ArticleCASPubMedPubMed Central Google Scholar
Corley, M. et al. An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression. Proc. Natl Acad. Sci. USA114, E10244–E10253 (2017). ArticleCASPubMedPubMed Central Google Scholar
Lee, A. S. Y., Kranzusch, P. J. & Cate, J. H. D. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature522, 111–114 (2015). ArticleCASPubMedPubMed Central Google Scholar
Xue, Z. et al. A G-rich motif in the lncRNA Braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol. Cell64, 37–50 (2016). ArticleCASPubMedPubMed Central Google Scholar
Long, K. S. & Vester, B. Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob. Agents Chemother.56, 603–612 (2012). ArticleCASPubMedPubMed Central Google Scholar
World Health Organization. WHO Model Lists of Essential Medicines, March 2017 (WHO, 2017).
Karthikeyan, S. et al. Crystal structure of human riboflavin kinase reveals a beta barrel fold and a novel active site arch. Structure11, 265–273 (2003). ArticleCASPubMed Google Scholar
Serganov, A., Huang, L. & Patel, D. J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature458, 233–237 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schneider, T. D., Stormo, G. D., Gold, L. & Ehrenfeucht, A. Information content of binding sites on nucleotide sequences. J. Mol. Biol.188, 415–431 (1986). ArticleCASPubMed Google Scholar
Witherell, G. W. & Uhlenbeck, O. C. Specific RNA binding by Q beta coat protein. Biochemistry28, 71–76 (1989). ArticleCASPubMed Google Scholar
Carothers, J. M., Oestreich, S. C., Davis, J. H. & Szostak, J. W. Informational complexity and functional activity of RNA structures. J. Am. Chem. Soc.126, 5130–5137 (2004). ArticleCASPubMedPubMed Central Google Scholar
Shang, L., Xu, W., Ozer, S. & Gutell, R. R. Structural constraints identified with covariation analysis in ribosomal RNA. PLoS ONE7, e39383 (2012). ArticleCASPubMedPubMed Central Google Scholar
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc.10, 1643–1669 (2015). ArticleCASPubMedPubMed Central Google Scholar
Carothers, J. M., Davis, J. H., Chou, J. J. & Szostak, J. W. Solution structure of an informationally complex high-affinity RNA aptamer to GTP. RNA12, 567–579 (2006). ArticleCASPubMedPubMed Central Google Scholar
Velagapudi, S. P. et al. Design of a small molecule against an oncogenic noncoding RNA. Proc. Natl Acad. Sci. USA113, 5898–5903 (2016). ArticleCASPubMedPubMed Central Google Scholar
Pérot, S., Sperandio, O., Miteva, M. A., Camproux, A.-C. & Villoutreix, B. O. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov. Today15, 656–667 (2010). ArticleCASPubMed Google Scholar
Fauman, E. B., Rai, B. K. & Huang, E. S. Structure-based druggability assessment — identifying suitable targets for small molecule therapeutics. Curr. Opin. Chem. Biol.15, 463–468 (2011). ArticleCASPubMed Google Scholar
An, J., Totrov, M. & Abagyan, R. Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol. Cell. Proteomics4, 752–761 (2005). ArticleCASPubMed Google Scholar
Bonneau, E. & Legault, P. Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement. Biochemistry53, 6264–6275 (2014). ArticleCASPubMed Google Scholar
Bonneau, E., Girard, N., Lemieux, S. & Legault, P. The NMR structure of the II-III-VI three-way junction from the Neurospora VS ribozyme reveals a critical tertiary interaction and provides new insights into the global ribozyme structure. RNA21, 1621–1632 (2015). ArticleCASPubMedPubMed Central Google Scholar
Michiels, P. J. et al. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. J. Mol. Biol.310, 1109–1123 (2001). ArticleCASPubMed Google Scholar
Hajdin, C. E. et al. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc. Natl Acad. Sci. USA110, 5498–5503 (2013). ArticlePubMedPubMed Central Google Scholar
Smola, M. J., Calabrese, J. M. & Weeks, K. M. Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry54, 6867–6875 (2015). ArticleCASPubMed Google Scholar
Gilbert, S. D., Reyes, F. E., Edwards, A. L. & Batey, R. T. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Structure17, 857–868 (2009). ArticleCASPubMedPubMed Central Google Scholar
Warner, K. D. et al. Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. Chem. Biol.21, 591–595 (2014). ArticleCASPubMedPubMed Central Google Scholar
Miao, Z. & Westhof, E. RNA structure: advances and assessment of 3D structure prediction. Annu. Rev. Biophys.46, 483–503 (2017). ArticleCASPubMed Google Scholar
Kozak, M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene361, 13–37 (2005). ArticleCASPubMed Google Scholar
Bandyopadhyay, S. et al. Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: implications for down syndrome and Alzheimer's disease. PLoS ONE8, e65978 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rzuczek, S. G. et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat. Chem. Biol.13, 188–193 (2017). ArticleCASPubMed Google Scholar
Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol.1, 337–341 (2004). ArticleCASPubMed Google Scholar
Ritchie, T. J. & Macdonald, S. J. F. How drug-like are 'ugly' drugs: do drug-likeness metrics predict ADME behaviour in humans? Drug Discov. Today19, 489–495 (2014). ArticleCASPubMed Google Scholar
Weeks, K. M. & Crothers, D. M. RNA recognition by Tat-derived peptides: interaction in the major groove? Cell66, 577–588 (1991). ArticleCASPubMed Google Scholar
Lin, A. H., Murray, R. W., Vidmar, T. J. & Marotti, K. R. The oxazolidinone eperezolid binds to the 50S ribosomal subunit and competes with binding of chloramphenicol and lincomycin. Antimicrob. Agents Chemother.41, 2127–2131 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ritchie, D. B., Soong, J., Sikkema, W. K. A. & Woodside, M. T. Anti-frameshifting ligand reduces the conformational plasticity of the SARS virus pseudoknot. J. Am. Chem. Soc.136, 2196–2199 (2014). ArticleCASPubMed Google Scholar
Parsons, J. et al. Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat. Chem. Biol.5, 823–825 (2009). ArticleCASPubMedPubMed Central Google Scholar
Costales, M. G. et al. Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. J. Am. Chem. Soc.139, 3446–3455 (2017). ArticleCASPubMedPubMed Central Google Scholar
Yildirim, I., Park, H., Disney, M. D. & Schatz, G. C. A dynamic structural model of expanded RNA CAG repeats: a refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations. J. Am. Chem. Soc.135, 3528–3538 (2013). ArticleCASPubMedPubMed Central Google Scholar
Leeper, T., Leulliot, N. & Varani, G. The solution structure of an essential stem-loop of human telomerase RNA. Nucleic Acids Res.31, 2614–2621 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. et al. Rbfox proteins regulate microRNA biogenesis by sequence-specific binding to their precursors and target downstream Dicer. Nucleic Acids Res.44, 4381–4395 (2016). ArticleCASPubMedPubMed Central Google Scholar
Faber, C., Sticht, H., Schweimer, K. & Rösch, P. Structural rearrangements of HIV-1 Tat-responsive RNA upon binding of neomycin B. J. Biol. Chem.275, 20660–20666 (2000). ArticleCASPubMed Google Scholar
Zhang, Q., Harada, K., Cho, H. S., Frankel, A. D. & Wemmer, D. E. Structural characterization of the complex of the Rev response element RNA with a selected peptide. Chem. Biol.8, 511–520 (2001). ArticleCASPubMed Google Scholar