Anti-TNF-α therapies: the next generation (original) (raw)
Carswell, E. A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl Acad. Sci. USA72, 3666–3670 (1975). CASPubMedPubMed Central Google Scholar
Wiemann, B. & Starnes, C. O. Coley's toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol. Ther.64, 529–564 (1994). ArticleCASPubMed Google Scholar
Kawakami, M. & Cerami, A. Studies of endotoxin-induced decrease in lipoprotein lipase activity. J. Exp. Med.154, 631–639 (1981). CASPubMed Google Scholar
Beutler, B., Mahoney, J., Le Trang, N., Pekala, P. & Cerami, A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J. Exp. Med.161, 984–995 (1985). References 1 and 4 are the original articles describing the anti-tumour activity of TNF and cachectin. CASPubMed Google Scholar
Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature316, 552–554 (1985). CASPubMed Google Scholar
Pennica, D., Hayflick, J. S., Bringman, T. S., Palladino, M. A. & Goeddel, D. V. Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc. Natl Acad. Sci. USA82, 6060–6064 (1985). CASPubMedPubMed Central Google Scholar
Pennica, D. et al. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature312, 724–729 (1984). This manuscript describes the cloning of complementary DNA for human TNF-α. CASPubMed Google Scholar
Kriegler, M., Perez, C., DeFay, K., Albert, I. & Lu, S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell53, 45–53 (1988). CASPubMed Google Scholar
Alexopoulou, L., Pasparakis, M. & Kollias, G. A murine transmembrane tumor necrosis factor (TNF) transgene induces arthritis by cooperative p55/p75 TNF receptor signaling. Eur. J. Immunol.27, 2588–2592 (1997). CASPubMed Google Scholar
Kusters, S. et al. In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis. Eur. J. Immunol.27, 2870–2875 (1997). CASPubMed Google Scholar
Josephs, M. D. et al. Lipopolysaccharide and d-galactosamine-induced hepatic injury is mediated by TNF-α and not by Fas ligand. Am. J. Physiol. Regul. Integr. Comp. Physiol.278, R1196–R1201 (2000). CASPubMed Google Scholar
Moss, M. L. et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature385, 733–736 (1997). CASPubMed Google Scholar
Peschon, J. J. et al. An essential role for ectodomain shedding in mammalian development. Science282, 1281–1284 (1998). CASPubMed Google Scholar
Evans, T. J. et al. Protective effect of 55- but not 75-kD soluble tumor necrosis factor receptor–immunoglobulin G fusion proteins in an animal model of gram-negative sepsis. J. Exp. Med.180, 2173–2179 (1994). CASPubMed Google Scholar
Grell, M., Wajant, H., Zimmermann, G. & Scheurich, P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc. Natl Acad. Sci. USA95, 570–575 (1998). CASPubMedPubMed Central Google Scholar
Tartaglia, L. A., Pennica, D. & Goeddel, D. V. Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J. Biol. Chem.268, 18542–18548 (1993). CASPubMed Google Scholar
Grell, M., Becke, F. M., Wajant, H., Mannel, D. N. & Scheurich, P. TNF receptor type 2 mediates thymocyte proliferation independently of TNF receptor type 1. Eur. J. Immunol.28, 257–263 (1998). CASPubMed Google Scholar
Alexander-Miller, M. A., Derby, M. A., Sarin, A., Henkart, P. A. & Berzofsky, J. A. Supraoptimal peptide-major histocompatibility complex causes a decrease in bc1-2 levels and allows tumor necrosis factor α receptor II-mediated apoptosis of cytotoxic T lymphocytes. J. Exp. Med.188, 1391–1399 (1998). CASPubMedPubMed Central Google Scholar
Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature377, 348–351 (1995). CASPubMed Google Scholar
Van Zee, K. J. et al. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor α in vitro and in vivo. Proc. Natl Acad. Sci. USA89, 4845–4849 (1992). CASPubMedPubMed Central Google Scholar
Seckinger, P., Isaaz, S. & Dayer, J. M. A human inhibitor of tumor necrosis factor α. J. Exp. Med.167, 1511–1516 (1988). CASPubMed Google Scholar
Engelmann, H., Aderka, D., Rubinstein, M., Rotman, D. & Wallach, D. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J. Biol. Chem.264, 11974–11980 (1989). CASPubMed Google Scholar
Olsson, I. et al. Isolation and characterization of a tumor necrosis factor binding protein from urine. Eur. J. Haematol.42, 270–275 (1989). Reference 20–23 are the original descriptions of the TNF-receptor-binding proteins. CASPubMed Google Scholar
Douni, E. et al. Transgenic and knockout analyses of the role of TNF in immune regulation and disease pathogenesis. J. Inflamm.47, 27–38 (1995). CASPubMed Google Scholar
Douni, E. & Kollias, G. A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin α, or the p55TNF-R. J. Exp. Med.188, 1343–1352 (1998). CASPubMedPubMed Central Google Scholar
Butler, D. M. et al. DBA/1 mice expressing the human TNF-α transgene develop a severe, erosive arthritis: characterization of the cytokine cascade and cellular composition. J. Immunol.159, 2867–2876 (1997). CASPubMed Google Scholar
Mussener, A., Litton, M. J., Lindroos, E. & Klareskog, L. Cytokine production in synovial tissue of mice with collagen-induced arthritis (CIA). Clin. Exp. Immunol.107, 485–493 (1997). CASPubMedPubMed Central Google Scholar
van den Berg, W. B. Uncoupling of inflammatory and destructive mechanisms in arthritis. Semin. Arthritis Rheum.30, 7–16 (2001). CASPubMed Google Scholar
Haralambous, S., Plows, D., Kollias, G. Attenuation of transgenic TNF triggered arthritis in IL-1R deficient mice. Europ. Cytokine Netw. (abstract)9, 408 (1998). Google Scholar
Joosten, L. A. et al. IL-1α β-blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation. J. Immunol.163, 5049–5055 (1999). CASPubMed Google Scholar
Probert, L., Plows, D., Kontogeorgos, G. & Kollias, G. The type I interleukin-1 receptor acts in series with tumor necrosis factor (TNF) to induce arthritis in TNF-transgenic mice. Eur. J. Immunol.25, 1794–1797 (1995). CASPubMed Google Scholar
Di Giovine, F. S., Nuki, G. & Duff, G. W. Tumour necrosis factor in synovial exudates. Ann. Rheum. Dis.47, 768–772 (1988). CASPubMedPubMed Central Google Scholar
Buchan, G. et al. Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1α. Clin. Exp. Immunol.73, 449–455 (1988). CASPubMedPubMed Central Google Scholar
Saxne, T., Palladino, M. A., Jr., Heinegard, D., Talal, N. & Wollheim, F. A. Detection of tumor necrosis factor α but not tumor necrosis factor β in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum.31, 1041–1045 (1988). References 32–34 describe the presence of TNF-α in rheumatoid arthritis synovial fluid and serum. CASPubMed Google Scholar
Taylor, P. C. Anti-TNF-α therapy for rheumatoid arthritis: an update. Intern. Med.42, 15–20 (2003). CASPubMed Google Scholar
Christen, U., Thuerkauf, R., Stevens, R. & Lesslauer, W. Immune response to a recombinant human TNFR55–IgG1 fusion protein: auto-antibodies in rheumatoid arthritis (RA) and multiple sclerosis (MS) patients have neither neutralizing nor agonist activities. Hum. Immunol.60, 774–790 (1999). CASPubMed Google Scholar
Baecklund, E., Ekbom, A., Sparen, P., Feltelius, N. & Klareskog, L. Disease activity and risk of lymphoma in patients with rheumatoid arthritis: nested case-control study. BMJ317, 180–181 (1998). CASPubMedPubMed Central Google Scholar
Baecklund, E. et al. Lymphoma subtypes in patients with rheumatoid arthritis: increased proportion of diffuse large B cell lymphoma. Arthritis Rheum.48, 1543–1550 (2003). PubMed Google Scholar
Ekstrom, K. et al. Risk of malignant lymphomas in patients with rheumatoid arthritis and in their first-degree relatives. Arthritis Rheum.48, 963–970 (2003). References 37–39 describe the potential risks associated with RA and anti-TNF therapies. PubMed Google Scholar
Thalidomide approved. Posit. Aware9, 16 (1998).
Rajkumar, S. V. et al. Thalidomide in the treatment of relapsed multiple myeloma. Mayo Clin. Proc.75, 897–901 (2000). CASPubMed Google Scholar
Rajkumar, S. V. & Witzig, T. E. A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat. Rev.26, 351–362 (2000). CASPubMed Google Scholar
Rajkumar, S. V. Thalidomide in multiple myeloma. Oncology (Huntingt.)14, 11–16 (2000). CAS Google Scholar
Rajkumar, S. V. et al. Thalidomide for previously untreated indolent or smoldering multiple myeloma. Leukemia15, 1274–1276 (2001). CASPubMed Google Scholar
Rajkumar, S. V. Current status of thalidomide in the treatment of cancer. Oncology (Huntingt.)15, 867–874; discussion 877–879 (2001). CAS Google Scholar
Nau, H. Species differences in pharmacokinetics and drug teratogenesis. Environ. Health Perspect.70, 113–129 (1986). CASPubMedPubMed Central Google Scholar
Neubert, R., Hinz, N., Thiel, R. & Neubert, D. Down-regulation of adhesion receptors on cells of primate embryos as a probable mechanism of the teratogenic action of thalidomide. Life Sci.58, 295–316 (1996). CASPubMed Google Scholar
Neubert, D., Heger, W., Merker, H. J., Sames, K. & Meister, R. Embryotoxic effects of thalidomide derivatives in the non-human primate Callithrix jacchus. II. Elucidation of the susceptible period and of the variability of embryonic stages. Arch. Toxicol.61, 180–191 (1988). CASPubMed Google Scholar
Klug, S. et al. Embryotoxic effects of thalidomide derivatives in the non-human primate Callithrix jacchus. 5. Lack of teratogenic effects of phthalimidophthalmide. Arch. Toxicol.68, 203–205 (1994). CASPubMed Google Scholar
Dredge, K. et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J. Immunol.168, 4914–4919 (2002). CASPubMed Google Scholar
Dredge, K. et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br. J. Cancer87, 1166–1172 (2002). CASPubMedPubMed Central Google Scholar
Marriott, J. B. et al. A novel subclass of thalidomide analogue with anti-solid tumor activity in which caspase-dependent apoptosis is associated with altered expression of bcl-2 family proteins. Cancer Res.63, 593–599 (2003). CASPubMed Google Scholar
Dredge, K., Marriott, J. B. & Dalgleish, A. G. Immunological effects of thalidomide and its chemical and functional analogs. Crit. Rev. Immunol.22, 425–437 (2002). CASPubMed Google Scholar
Dredge, K., Dalgleish, A. G. & Marriott, J. B. Thalidomide analogs as emerging anti-cancer drugs. Anticancer Drugs14, 331–335 (2003). CASPubMed Google Scholar
Burnouf, C. & Pruniaux, M. P. Recent advances in PDE4 inhibitors as immunoregulators and anti-inflammatory drugs. Curr. Pharm. Des.8, 1255–1296 (2002). CASPubMed Google Scholar
Barnette, M. S. Phosphodiesterase 4 (PDE4) inhibitors in asthma and chronic obstructive pulmonary disease (COPD). Prog. Drug. Res.53, 193–229 (1999). CASPubMed Google Scholar
Giembycz, M. A. Development status of second generation PDE4 inhibitors for asthma and COPD: the story so far. Monaldi. Arch. Chest Dis.57, 48–64 (2002). CASPubMed Google Scholar
Spina, D. Theophylline and PDE4 inhibitors in asthma. Curr. Opin. Pulm. Med.9, 57–64 (2003). CASPubMed Google Scholar
Han, J., Lee, J. D., Tobias, P. S. & Ulevitch, R. J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J. Biol. Chem.268, 25009–25014 (1993). CASPubMed Google Scholar
Haddad, J. J. VX-745. Vertex Pharmaceuticals. Curr. Opin. Investig. Drugs2, 1070–1076 (2001). CASPubMed Google Scholar
Rasmussen, H. S. & McCann, P. P. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol. Ther.75, 69–75 (1997). CASPubMed Google Scholar
Tsuji, F. et al. Differential effects between marimastat, a TNF-α converting enzyme inhibitor, and anti-TNF-α antibody on murine models for sepsis and arthritis. Cytokine17, 294–300 (2002). CASPubMed Google Scholar
Roff, M. et al. Role of IκBα ubiquitination in signal-induced activation of NFκB in vivo. J. Biol. Chem.271, 7844–7850 (1996). CASPubMed Google Scholar
Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell46, 705–716 (1986). CASPubMed Google Scholar
Birbach, A. et al. Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem.277, 10842–10851 (2002). CASPubMed Google Scholar
O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M. & Mackman, N. Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem.273, 30410–30414 (1998). CASPubMed Google Scholar
Lin, H., Chen, C. & Chen, B. D. Resistance of bone marrow-derived macrophages to apoptosis is associated with the expression of X-linked inhibitor of apoptosis protein in primary cultures of bone marrow cells. Biochem. J.353, 299–306 (2001). CASPubMedPubMed Central Google Scholar
Adams, J. Preclinical development of velcade (bortezomib; formerly PS-341) for multiple myeloma. Eur. J. Haematol.70, 265 (2003). Google Scholar
Twombly, R. First proteasome inhibitor approved for multiple myeloma. J. Natl Cancer Inst.95, 845 (2003). PubMed Google Scholar
Lee, J. H., Koo, T. H., Hwang, B. Y. & Lee, J. J. Kaurane diterpene, kamebakaurin, inhibits NF-κB by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-κB target genes. J. Biol. Chem.277, 18411–18420 (2002). CASPubMed Google Scholar
Hwang, B. Y. et al. Kaurane diterpenes from I_sodon japonicus_ inhibit nitric oxide and prostaglandin E2 production and NF-κB activation in LPS-stimulated macrophage RAW264.7 cells. Planta Med.67, 406–410 (2001). CASPubMed Google Scholar
Posadas, I. et al. Inhibition of the NF-κB signaling pathway mediates the anti-inflammatory effects of petrosaspongiolide M. Biochem. Pharmacol.65, 887–895 (2003). CASPubMed Google Scholar
Hehner, S. P. et al. Sesquiterpene lactones specifically inhibit activation of NF-κB by preventing the degradation of IκB-α and IκB-β. J. Biol. Chem.273, 1288–1297 (1998). CASPubMed Google Scholar
Sheehan, M. et al. Parthenolide, an inhibitor of the nuclear factor-κB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Mol. Pharmacol.61, 953–963 (2002). CASPubMed Google Scholar
Kwok, B. H., Koh, B., Ndubuisi, M. I., Elofsson, M. & Crews, C. M. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase. Chem. Biol.8, 759–766 (2001). CASPubMed Google Scholar
Kim, E. J. et al. Suppression by a sesquiterpene lactone from Carpesium divaricatum of inducible nitric oxide synthase by inhibiting nuclear factor-κB activation. Biochem. Pharmacol.61, 903–910 (2001). References 70–76 are representative articles describing natural product anti-inflammatory molecules. CASPubMed Google Scholar
Singh, S., Natarajan, K. & Aggarwal, B. B. Capsaicin (8-methyl-_N_-vanillyl-6-nonenamide) is a potent inhibitor of nuclear transcription factor-κB activation by diverse agents. J. Immunol.157, 4412–4420 (1996). CASPubMed Google Scholar
Lange, R. W., Hayden, P. J., Chignell, C. F. & Luster, M. I. Anthralin stimulates keratinocyte-derived proinflammatory cytokines via generation of reactive oxygen species. Inflamm. Res.47, 174–181 (1998). CASPubMed Google Scholar
Simeonova, P. P. & Luster, M. I. Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-α response from alveolar macrophages. Am. J. Respir. Cell. Mol. Biol.12, 676–683 (1995). CASPubMed Google Scholar
Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J. Biol. Chem.278, 1450–1456 (2003). CASPubMed Google Scholar
Manna, S. K., Bueso-Ramos, C., Alvarado, F. & Aggarwal, B. B. Calagualine inhibits nuclear transcription factors-κB activated by various inflammatory and tumor promoting agents. Cancer Lett.190, 171–182 (2003). CASPubMed Google Scholar
Han, J., Thompson, P. & Beutler, B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J. Exp. Med.172, 391–394 (1990). CASPubMed Google Scholar
Dixon, T. C., Meselson, M., Guillemin, J. & Hanna, P. C. Anthrax. N. Engl. J. Med.341, 815–826 (1999). CASPubMed Google Scholar
Guidi-Rontani, C. The alveolar macrophage: the Trojan horse of Bacillus anthracis. Trends Microbiol.10, 405–409 (2002). CASPubMed Google Scholar
Hanna, P. Lethal toxin actions and their consequences. J. Appl. Microbiol.87, 285–287 (1999). CASPubMed Google Scholar
Hanna, P. C., Acosta, D. & Collier, R. J. On the role of macrophages in anthrax. Proc. Natl Acad. Sci. USA90, 10198–10201 (1993). CASPubMedPubMed Central Google Scholar
Bradley, K. A., Mogridge, J., Mourez, M., Collier, R. J. & Young, J. A. Identification of the cellular receptor for anthrax toxin. Nature414, 225–229 (2001). CASPubMed Google Scholar
Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H. & Liddington, R. C. Crystal structure of the anthrax toxin protective antigen. Nature385, 833–838 (1997). CASPubMed Google Scholar
Leppla, S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl Acad. Sci. USA79, 3162–3166 (1982). CASPubMedPubMed Central Google Scholar
Duesbery, N. S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science280, 734–737 (1998). CASPubMed Google Scholar
Park, J. M., Greten, F. R., Li, Z. W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science297, 2048–2051 (2002). CASPubMed Google Scholar
Vitale, G., Bernardi, L., Napolitani, G., Mock, M. & Montecucco, C. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J.352, 739–745 (2000). CASPubMedPubMed Central Google Scholar
Vitale, G. et al. Anthrax lethal factor cleaves the N-terminus of MAPKKS and induces tyrosine/threonine phosphorylation of MAPKS in cultured macrophages. J. Appl. Microbiol.87, 288 (1999). CASPubMed Google Scholar
Pellizzari, R., Guidi-Rontani, C., Vitale, G., Mock, M. & Montecucco, C. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNγ-induced release of NO and TNF-α. FEBS Lett.462, 199–204 (1999). CASPubMed Google Scholar
Tang, G. & Leppla, S. H. Proteasome activity is required for anthrax lethal toxin to kill macrophages. Infect. Immun.67, 3055–3060 (1999). CASPubMedPubMed Central Google Scholar
Amir, R., Ciechanover, A. & Cohen, S. The ubiquitin-proteasome system: the relationship between protein degradation and human diseases. Harefuah140, 1172–1176, 1229 (2001). CASPubMed Google Scholar
Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem.261, 7123–7126 (1986). CASPubMed Google Scholar
Roberts, J. E., Watters, J. W., Ballard, J. D. & Dietrich, W. F. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11. Mol. Microbiol.29, 581–591 (1998). CASPubMed Google Scholar
Welkos, S. L. & Friedlander, A. M. Pathogenesis and genetic control of resistance to the Sterne strain of Bacillus anthracis. Microb. Pathog.4, 53–69 (1988). CASPubMed Google Scholar
Welkos, S. L., Keener, T. J. & Gibbs, P. H. Differences in susceptibility of inbred mice to Bacillus anthracis. Infect. Immun.51, 795–800 (1986). CASPubMedPubMed Central Google Scholar
Welkos, S. L. & Friedlander, A. M. Comparative safety and efficacy against Bacillus anthracis of protective antigen and live vaccines in mice. Microb. Pathog.5, 127–139 (1988). CASPubMed Google Scholar
Watters, J. W., Dewar, K., Lehoczky, J., Boyartchuk, V. & Dietrich, W. F. Kif1C, a kinesin-like motor protein, mediates mouse macrophage resistance to anthrax lethal factor. Curr. Biol.11, 1503–1511 (2001). CASPubMed Google Scholar
Kim, S. O. et al. Sensitizing anthrax lethal toxin-resistant macrophages to lethal toxin-induced killing by tumor necrosis factor-α. J. Biol. Chem.278, 7413–7421 (2003). References 91, 97 and 105 describe the potential roles of TNF-α and proteasome inhibition and in anthrax. CASPubMed Google Scholar