The IL-33/ST2 pathway: therapeutic target and novel biomarker (original) (raw)
Sims, J. E. IL-1 and IL-18 receptors, and their extended family. Curr. Opin. Immunol.14, 117–122 (2002). ArticleCASPubMed Google Scholar
Tominaga, S. A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett.258, 301–304 (1989). ArticleCASPubMed Google Scholar
Trajkovic, V., Sweet, M. J. & Xu, D. T1/ST2 — an IL-1 receptor-like modulator of immune responses. Cytokine Growth Factor Rev.15, 87–95 (2004). ArticleCASPubMed Google Scholar
Meisel, C. et al. Regulation and function of T1/ST2 expression on CD4+ T cells: induction of type 2 cytokine production by T1/ST2 cross-linking. J. Immunol.166, 3143–3150 (2001). ArticleCASPubMed Google Scholar
Oshikawa, K. et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am. J. Resp. Crit. Care Med.164, 277–281 (2001). ArticleCASPubMed Google Scholar
Leung, B. P., Xu, D., Culshaw, S., McInnes, I. B. & Liew, F. Y. A novel therapy of murine collagen-induced arthritis with soluble T1/ST2. J. Immunol.173, 145–150 (2004). ArticleCASPubMed Google Scholar
Kuroiwa, K., Arai, T., Okazaki, H., Minota, S. & Tominaga, S. Identification of human ST2 protein in the sera of patients with autoimmune diseases. Biochem. Biophys. Res. Commun.284, 1104–1108 (2001). ArticleCASPubMed Google Scholar
Brunner, M. et al. Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med.30, 1468–1473 (2004). ArticlePubMed Google Scholar
Barksby, H. E., Lea, S. R., Preshaw, P. M. & Taylor, J. J. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin. Exp. Immunol.149, 217–225 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity23, 479–490 (2005). This study identifies IL-33 as the functional ligand of ST2L, documenting the production of Th2-related cytokines bothin vitroandin vivo. ArticleCASPubMed Google Scholar
Dinarello, C. A. An IL-1 family member requires caspase-1 processing and signals through the ST2 receptor. Immunity23, 461–462 (2005). ArticleCASPubMed Google Scholar
Sanada, S. et al. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest.117, 1538–1549 (2007). This was the first study to suggest that IL-33 might act as a fibroblast–cardiomyocyte signalling system. IL-33 was found to be upregulated in fibroblasts when they were subjected to biomechanical strain and to modulate cardiomyocyte NF-κB levels, resulting in resistance to the effects of cardiac pressure overload injury in thein vivomodel. ArticleCASPubMedPubMed Central Google Scholar
Miller, A. M. et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med.205, 339–346 (2008). This study documents the anti-atherosclerotic effect of exogenous IL-33 administration in theApoE-null mouse, a model of accelerated atherogenesis. This effect is suggested to be mediated through a shift from a Th1 to a Th2 immune response. ArticleCASPubMedPubMed Central Google Scholar
Januzzi, J. L. Jr et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol.50, 607–613 (2007). This study builds upon previous data regarding sST2 as a cardiac biomarker, suggesting that serum levels of sST2 might be sensitive enough to distinguish between cardiovascular and non-cardiovascular causes of shortness of breath in patients presenting to the emergency ward. ArticleCASPubMed Google Scholar
Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature408, 111–115 (2000). ArticleCASPubMed Google Scholar
Michelsen, K. S., Doherty, T. M., Shah, P. K. & Arditi, M. TLR signaling: an emerging bridge from innate immunity to atherogenesis. J. Immunol.173, 5901–5907 (2004). ArticleCASPubMed Google Scholar
Abreu, M. T. & Arditi, M. Innate immunity and toll-like receptors: clinical implications of basic science research. J. Pediatr.144, 421–429 (2004). ArticleCASPubMed Google Scholar
O'Neill, L. A. & Bowie, A. G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature Rev. Immunol.7, 353–364 (2007). ArticleCAS Google Scholar
Werenskiold, A. K., Hoffmann, S. & Klemenz, R. Induction of a mitogen-responsive gene after expression of the Ha-ras oncogene in NIH 3T3 fibroblasts. Mol. Cell. Biol.9, 5207–5214 (1989). CASPubMedPubMed Central Google Scholar
Klemenz, R., Hoffmann, S. & Werenskiold, A. K. Serum- and oncoprotein-mediated induction of a gene with sequence similarity to the gene encoding carcinoembryonic antigen. Proc. Natl Acad. Sci. USA86, 5708–5712 (1989). ArticleCASPubMedPubMed Central Google Scholar
Werenskiold, A. K. Characterization of a secreted glycoprotein of the immunoglobulin superfamily inducible by mitogen and oncogene. Eur. J. Biochem.204, 1041–1047 (1992). ArticleCASPubMed Google Scholar
Takagi, T. et al. Identification of the product of the murine ST2 gene. Biochim. Biophys. Acta1178, 194–200 (1993). ArticleCASPubMed Google Scholar
Yanagisawa, K., Takagi, T., Tsukamoto, T., Tetsuka, T. & Tominaga, S. Presence of a novel primary response gene ST2L, encoding a product highly similar to the interleukin 1 receptor type 1. FEBS Lett.318, 83–87 (1993). ArticleCASPubMed Google Scholar
Iwahana, H. et al. Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. Eur. J. Biochem.264, 397–406 (1999). ArticleCASPubMed Google Scholar
Bergers, G., Reikerstorfer, A., Braselmann, S., Graninger, P. & Busslinger, M. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO J.13, 1176–1188 (1994). ArticleCASPubMedPubMed Central Google Scholar
Thomassen, E. et al. Role of cell type-specific promoters in the developmental regulation of T1, an interleukin 1 receptor homologue. Cell Growth Differ.6, 179–184 (1995). CASPubMed Google Scholar
Gachter, T., Werenskiold, A. K. & Klemenz, R. Transcription of the interleukin-1 receptor-related T1 gene is initiated at different promoters in mast cells and fibroblasts. J. Biol. Chem.271, 124–129 (1996). ArticleCASPubMed Google Scholar
Tominaga, S. et al. Presence and expression of a novel variant form of ST2 gene product in human leukemic cell line UT-7/GM. Biochem. Biophys. Res. Commun.264, 14–18 (1999). ArticleCASPubMed Google Scholar
Iwahana, H. et al. Molecular cloning of the chicken ST2 gene and a novel variant form of the ST2 gene product, ST2LV. Biochim. Biophys. Acta1681, 1–14 (2004). ArticleCASPubMed Google Scholar
Lohning, M. et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc. Natl Acad. Sci. USA95, 6930–6935 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yanagisawa, K. et al. The expression of ST2 gene in helper T cells and the binding of ST2 protein to myeloma-derived RPMI8226 cells. J. Biochem.121, 95–103 (1997). ArticleCASPubMed Google Scholar
Xu, D. et al. Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J. Exp. Med.187, 787–794 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rossler, U. et al. Secreted and membrane-bound isoforms of T1, an orphan receptor related to IL-1-binding proteins, are differently expressed in vivo. Dev. Biol.168, 86–97 (1995). ArticleCASPubMed Google Scholar
Kumar, S., Tzimas, M. N., Griswold, D. E. & Young, P. R. Expression of ST2, an interleukin-1 receptor homologue, is induced by proinflammatory stimuli. Biochem. Biophys. Res. Commun.235, 474–478 (1997). ArticleCASPubMed Google Scholar
Tago, K. et al. Tissue distribution and subcellular localization of a variant form of the human ST2 gene product, ST2V. Biochem. Biophys. Res. Commun.285, 1377–1383 (2001). ArticleCASPubMed Google Scholar
Kumar, S., Minnich, M. D. & Young, P. R. ST2/T1 protein functionally binds to two secreted proteins from Balb/c 3T3 and human umbilical vein endothelial cells but does not bind interleukin 1. J. Biol. Chem.270, 27905–27913 (1995). ArticleCASPubMed Google Scholar
Baekkevold, E. S. et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am. J. Pathol.163, 69–79 (2003). ArticleCASPubMedPubMed Central Google Scholar
Carriere, V. et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl Acad. Sci. USA104, 282–287 (2007). This study documents the intranuclear properties of IL-33. IL-33 was found to be heterochromatin-associated in human endothelial cells, exerting a repressive effect on DNA transcription. The authors identify a conserved N-terminal motif that is necessary and sufficient for targeting IL-33 to the nucleus. ArticleCASPubMed Google Scholar
Sharma, S. et al. The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J. Immunol.180, 5477–5482 (2008). ArticleCASPubMed Google Scholar
Gadina, M. & Jefferies, C. A. IL-33: a sheep in wolf's clothing? Sci. STKE390, pe31 (2007). Google Scholar
Keller, M., Ruegg, A., Werner, S. & Beer, H. D. Active caspase-1 is a regulator of unconventional protein secretion. Cell132, 818–831 (2008). ArticleCASPubMed Google Scholar
Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol.2, 675–680 (2001). ArticleCAS Google Scholar
Palmer, G. et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine42, 358–364 (2008). ArticleCASPubMed Google Scholar
Chackerian, A. A. et al. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J. Immunol.179, 2551–2555 (2007). This study characterizes the IL-33 receptor as ST2L and the IL-1R accessory protein (IL-1RAcP). ArticleCASPubMed Google Scholar
Ali, S. et al. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc. Natl Acad. Sci. USA104, 18660–18665 (2007). ArticleCASPubMedPubMed Central Google Scholar
Funakoshi-Tago, M. et al. TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell. Signal.20, 1679–1686 (2008). ArticleCASPubMed Google Scholar
Brint, E. K. et al. Characterization of signaling pathways activated by the interleukin 1 (IL-1) receptor homologue T1/ST2. A role for Jun N-terminal kinase in IL-4 induction. J. Biol. Chem.277, 49205–49211 (2002). ArticleCASPubMed Google Scholar
Brint, E. K. et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nature Immunol.5, 373–379 (2004). This study suggests that ST2L negatively regulates TLR-4 signalling by sequestering the adaptor proteins MAL and MyD88. Furthermore,ST2-null mice did not develop tolerance to repeated LPS exposure. ArticleCAS Google Scholar
Kondo, Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol.20, 791–800 (2008). ArticleCASPubMed Google Scholar
Oshikawa, K., Yanagisawa, K., Tominaga, S. & Sugiyama, Y. Expression and function of the ST2 gene in a murine model of allergic airway inflammation. Clin. Exp. Allergy32, 1520–1526 (2002). ArticleCASPubMed Google Scholar
Hayakawa, H., Hayakawa, M., Kume, A. & Tominaga, S. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J. Biol. Chem.282, 26369–26380 (2007). The anti-IL-33 effects of sST2 are clarified in this study. Specifically, sST2 is shown to bind IL-33 and suppress activation of NF-κB, as well as abrogate the expression of Th2-associated cytokines. ArticleCASPubMed Google Scholar
Komai-Koma, M. et al. IL-33 is a chemoattractant for human Th2 cells. Eur. J. Immunol.37, 2779–2786 (2007). ArticleCASPubMed Google Scholar
Kropf, P. et al. Expression of Th2 cytokines and the stable Th2 marker ST2L in the absence of IL-4 during Leishmania major infection. Eur. J. Immunol.29, 3621–3628 (1999). ArticleCASPubMed Google Scholar
Kopf, M. et al. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature362, 245–248 (1993). ArticleCASPubMed Google Scholar
Hoshino, K. et al. The absence of interleukin 1 receptor-related T1/ST2 does not affect T helper cell type 2 development and its effector function. J. Exp. Med.190, 1541–1548 (1999). ArticleCASPubMedPubMed Central Google Scholar
Townsend, M. J., Fallon, P. G., Matthews, D. J., Jolin, H. E. & McKenzie, A. N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med.191, 1069–1076 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kropf, P. et al. Identification of two distinct subpopulations of _Leishmania major_-specific T helper 2 cells. Infect. Immun.70, 5512–5520 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ying, S. et al. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J. Immunol.158, 3539–3544 (1997). CASPubMed Google Scholar
Hogan, S. P. et al. A novel T cell-regulated mechanism modulating allergen-induced airways hyperreactivity in BALB/c mice independently of IL-4 and IL-5. J. Immunol.161, 1501–1509 (1998). CASPubMed Google Scholar
Coyle, A. J. et al. Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J. Exp. Med.190, 895–902 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lambrecht, B. N. et al. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J. Clin. Invest.106, 551–559 (2000). ArticleCASPubMedPubMed Central Google Scholar
Allakhverdi, Z., Smith, D. E., Comeau, M. R. & Delespesse, G. Cutting edge: The ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol.179, 2051–2054 (2007). ArticleCASPubMed Google Scholar
Moulin, D. et al. Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine40, 216–225 (2007). ArticleCASPubMed Google Scholar
Oshikawa, K. et al. Acute eosinophilic pneumonia with increased soluble ST2 in serum and bronchoalveolar lavage fluid. Respir. Med.95, 532–533 (2001). ArticleCASPubMed Google Scholar
Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nature Rev. Immunol.4, 583–594 (2004). ArticleCAS Google Scholar
Tajima, S. et al. ST2 gene induced by type 2 helper T cell (Th2) and proinflammatory cytokine stimuli may modulate lung injury and fibrosis. Exp. Lung Res.33, 81–97 (2007). ArticleCASPubMed Google Scholar
Tajima, S., Oshikawa, K., Tominaga, S. & Sugiyama, Y. The increase in serum soluble ST2 protein upon acute exacerbation of idiopathic pulmonary fibrosis. Chest124, 1206–1214 (2003). ArticleCASPubMed Google Scholar
Amatucci, A. et al. Recombinant ST2 boosts hepatic Th2 response in vivo. J. Leukoc. Biol.82, 124–132 (2007). ArticleCASPubMed Google Scholar
Sweet, M. J. et al. A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J. Immunol.166, 6633–6639 (2001). ArticleCASPubMed Google Scholar
Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest.117, 524–529 (2007). ArticleCASPubMedPubMed Central Google Scholar
Miltenburg, A. M., van Laar, J. M., de Kuiper, R., Daha, M. R. & Breedveld, F. C. T cells cloned from human rheumatoid synovial membrane functionally represent the Th1 subset. Scand. J. Immunol.35, 603–610 (1992). ArticleCASPubMed Google Scholar
Dolhain, R. J., van der Heiden, A. N., ter Haar, N. T., Breedveld, F. C. & Miltenburg, A. M. Shift toward T lymphocytes with a T helper 1 cytokine-secretion profile in the joints of patients with rheumatoid arthritis. Arthritis Rheum.39, 1961–1969 (1996). ArticleCASPubMed Google Scholar
Verri, W. A. Jr et al. IL-33 mediates antigen-induced cutaneous and articular hypernociception in mice. Proc. Natl Acad. Sci. USA105, 2723–2728 (2008). ArticleCASPubMedPubMed Central Google Scholar
Miller, A. C., Rashid, R. M. & Elamin, E. M. The “T” in trauma: the helper T-cell response and the role of immunomodulation in trauma and burn patients. J. Trauma63, 1407–1417 (2007). CASPubMed Google Scholar
Oshikawa, K., Yanagisawa, K., Tominaga, S. & Sugiyama, Y. ST2 protein induced by inflammatory stimuli can modulate acute lung inflammation. Biochem. Biophys. Res. Commun.299, 18–24 (2002). ArticleCASPubMed Google Scholar
Feterowski, C. et al. Attenuated pathogenesis of polymicrobial peritonitis in mice after TLR2 agonist pre-treatment involves ST2 up-regulation. Int. Immunol.17, 1035–1046 (2005). ArticleCASPubMed Google Scholar
Klemenz, R., Hoffmann, S., Jaggi, R. & Werenskiold, A. K. The v-mos and c-Ha-ras oncoproteins exert similar effects on the pattern of protein synthesis. Oncogene4, 799–803 (1989). CASPubMed Google Scholar
Rossler, U., Andres, A. C., Reichmann, E., Schmahl, W. & Werenskiold, A. K. T1, an immunoglobulin superfamily member, is expressed in H-ras-dependent epithelial tumours of mammary cells. Oncogene8, 609–617 (1993). CASPubMed Google Scholar
Oshikawa, K., Yanagisawa, K., Ohno, S., Tominaga, S. & Sugiyama, Y. Expression of ST2 in helper T lymphocytes of malignant pleural effusions. Am. J. Respir. Crit. Care Med.165, 1005–1009 (2002). ArticlePubMed Google Scholar
Weinberg, E. O. et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation106, 2961–2966 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shimpo, M. et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation109, 2186–2190 (2004). This study establishes sST2 as a cardiac biomarker, documenting a correlation between sST2 levels in patients presenting to hospital with myocardial infarction and the chance of death or of developing heart failure. ArticleCASPubMed Google Scholar
Daniels, L. B. & Maisel, A. S. Natriuretic peptides. J. Am. Coll. Cardiol.50, 2357–2368 (2007). ArticleCASPubMed Google Scholar
Weinberg, E. O. et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation107, 721–726 (2003). ArticlePubMed Google Scholar
Januzzi, J. L. Jr et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol.95, 948–954 (2005). ArticleCASPubMed Google Scholar
Sabatine, M. S. et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N. Engl. J. Med.352, 1179–1189 (2005). ArticleCASPubMed Google Scholar
Morrow, D. A. et al. TIMI risk score for ST-elevation myocardial infarction: a convenient, bedside, clinical score for risk assessment at presentation: an intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation102, 2031–2037 (2000). ArticleCASPubMed Google Scholar
Antman, E. M. et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA284, 835–842 (2000). ArticleCASPubMed Google Scholar
Sabatine, M. S. et al. Complementary roles for biomarkers of biomechanical strain, ST2 and NT-proBNP, in patients with ST-elevation myocardial infarction. Circulation117, 1936–1944 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zethelius, B. et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N. Engl. J. Med.358, 2107–2116 (2008). ArticleCASPubMed Google Scholar
Mallory, G., White, P. & Salcedo-Salgar, J. The speed of healing of myocardial infarction: a study of the pathologic anatomy in seventy-two cases. Am. Heart J.18, 647–671 (1939). Article Google Scholar
Fishbein, M. C., Maclean, D. & Maroko, P. R. The histopathologic evolution of myocardial infarction. Chest73, 843–849 (1978). ArticleCASPubMed Google Scholar
Frangogiannis, N. G., Smith, C. W. & Entman, M. L. The inflammatory response in myocardial infarction. Cardiovascular Res.53, 31–47 (2002). ArticleCAS Google Scholar
Hepper, N. G., Pruitt, R. D., Donald, D. E. & Edwards, J. E. The effect of cortisone on experimentally produced myocardial infarcts. Circulation11, 742–748 (1955). ArticleCASPubMed Google Scholar
Johnson, A. S., Scheinberg, S. R., Gerisch, R. A. & Saltzstein, H. C. Effect of cortisone on the size of experimentally produced myocardial infarcts. Circulation7, 224–228 (1953). ArticleCASPubMed Google Scholar
Libby, P., Maroko, P. R., Bloor, C. M., Sobel, B. E. & Braunwald, E. Reduction of experimental myocardial infarct size by corticosteroid administration. J. Clin. Invest.52, 599–607 (1973). ArticleCASPubMedPubMed Central Google Scholar
Opdyke, D. F., Lambert, A., Stoerk, H. C., Zanetti, M. E. & Kuna, S. Failure to reduce the size of experimentally produced myocardial infarcts by cortisone treatment. Circulation8, 544–548 (1953). ArticleCASPubMed Google Scholar
Roberts, R., DeMello, V. & Sobel, B. E. Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation53, I204–206 (1976). ArticleCASPubMed Google Scholar
Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med.357, 1121–1135 (2007). ArticleCASPubMed Google Scholar
Yang, Z. et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation114, 2056–2064 (2006). ArticleCASPubMed Google Scholar
Timmers, L. et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ. Res.102, 257–264 (2008). ArticleCASPubMed Google Scholar
Diez, J., Gonzalez, A., Lopez, B. & Querejeta, R. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nature Clin. Pract. Cadiovasc. Med.2, 209–216 (2005). ArticleCAS Google Scholar
McKinsey, T. A. & Olson, E. N. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J. Clin. Invest.115, 538–546 (2005). ArticleCASPubMedPubMed Central Google Scholar
Marian, A. J. Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet355, 58–60 (2000). ArticleCASPubMed Google Scholar
Baudino, T. A., Carver, W., Giles, W. & Borg, T. K. Cardiac fibroblasts: friend or foe? Am. J. Physiol.291, H1015–1026 (2006). CAS Google Scholar
Sadoshima, J. & Izumo, S. The cellular and molecular response of cardiac myocytes to mechanical stress. Annu. Rev. Physiol.59, 551–571 (1997). ArticleCASPubMed Google Scholar
Manabe, I., Shindo, T. & Nagai, R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ. Res.91, 1103–1113 (2002). ArticleCASPubMed Google Scholar
Dzau, V. J. & Re, R. Tissue angiotensin system in cardiovascular medicine. A paradigm shift? Circulation89, 493–498 (1994). ArticleCASPubMed Google Scholar
Klug, D., Robert, V. & Swynghedauw, B. Role of mechanical and hormonal factors in cardiac remodeling and the biologic limits of myocardial adaptation. Am. J. Cardiol.71, 46A–54A (1993). ArticleCASPubMed Google Scholar
Pouleur, H. Role of neurohormones in ventricular adaptation and failure. Am. J. Cardiol.73, 36C–39C (1994). ArticleCASPubMed Google Scholar
Weber, K. T. & Brilla, C. G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin–angiotensin–aldosterone system. Circulation83, 1849–1865 (1991). ArticleCASPubMed Google Scholar
Werenskiold, A. K. et al. Bone matrix deposition of T1, a homologue of interleukin 1 receptors. Cell Growth Differ.6, 171–177 (1995). CASPubMed Google Scholar
Robertson, A. K. & Hansson, G. K. T cells in atherogenesis: for better or for worse? Arterioscler. Thromb. Vasc. Biol.26, 2421–2432 (2006). ArticleCASPubMed Google Scholar
Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352, 1685–1695 (2005). ArticleCASPubMed Google Scholar
Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nature Rev. Immunol.6, 508–519 (2006). ArticleCAS Google Scholar
Jonasson, L., Holm, J., Skalli, O., Bondjers, G. & Hansson, G. K. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis6, 131–138 (1986). ArticleCASPubMed Google Scholar
Hansson, G. K., Holm, J. & Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol.135, 169–175 (1989). CASPubMedPubMed Central Google Scholar
Stemme, S., Rymo, L. & Hansson, G. K. Polyclonal origin of T lymphocytes in human atherosclerotic plaques. Lab. Invest.65, 654–660 (1991). CASPubMed Google Scholar
Liuzzo, G. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation101, 2883–2888 (2000). ArticleCASPubMed Google Scholar
Roselaar, S. E., Kakkanathu, P. X. & Daugherty, A. Lymphocyte populations in atherosclerotic lesions of apoE−/− and LDL receptor−/− mice. Decreasing density with disease progression. Arterioscler. Thromb. Vasc. Biol.16, 1013–1018 (1996). ArticleCASPubMed Google Scholar
Zhou, X., Nicoletti, A., Elhage, R. & Hansson, G. K. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation102, 2919–2922 (2000). ArticleCASPubMed Google Scholar
Reardon, C. A. et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.21, 1011–1016 (2001). ArticleCASPubMed Google Scholar
Dansky, H. M., Charlton, S. A., Harper, M. M. & Smith, J. D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA94, 4642–4646 (1997). ArticleCASPubMedPubMed Central Google Scholar
Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med.320, 915–924 (1989). ArticleCASPubMed Google Scholar
Nakajima, T. et al. De novo expression of killer immunoglobulin-like receptors and signaling proteins regulates the cytotoxic function of CD4 T cells in acute coronary syndromes. Circ. Res.93, 106–113 (2003). ArticleCASPubMed Google Scholar
Zhou, X., Robertson, A. K., Rudling, M., Parini, P. & Hansson, G. K. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ. Res.96, 427–434 (2005). ArticleCASPubMed Google Scholar
Frostegard, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis145, 33–43 (1999). ArticleCASPubMed Google Scholar
Lee, T. S., Yen, H. C., Pan, C. C. & Chau, L. Y. The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol.19, 734–742 (1999). ArticleCASPubMed Google Scholar
Buono, C. et al. Influence of interferon-γ on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol.23, 454–460 (2003). ArticleCASPubMed Google Scholar
Whitman, S. C., Ravisankar, P., Elam, H. & Daugherty, A. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. Am. J. Pathol.157, 1819–1824 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mallat, Z. et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ. Res.89, E41–E45 (2001). CASPubMed Google Scholar
Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA102, 1596–1601 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mallat, Z. et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation104, 1598–1603 (2001). ArticleCASPubMed Google Scholar
Huber, S. A., Sakkinen, P., David, C., Newell, M. K. & Tracy, R. P. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation103, 2610–2616 (2001). ArticleCASPubMed Google Scholar
Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest.114, 427–437 (2004). ArticleCASPubMedPubMed Central Google Scholar
Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol.163, 1117–1125 (2003). ArticleCASPubMedPubMed Central Google Scholar
King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol.22, 456–461 (2002). ArticleCASPubMed Google Scholar
Shimizu, K., Shichiri, M., Libby, P., Lee, R. T. & Mitchell, R. N. Th2-predominant inflammation and blockade of IFN-γ signaling induce aneurysms in allografted aortas. J. Clin. Invest.114, 300–308 (2004). ArticleCASPubMedPubMed Central Google Scholar
Leskinen, M. J., Kovanen, P. T. & Lindstedt, K. A. Regulation of smooth muscle cell growth, function and death in vitro by activated mast cells--a potential mechanism for the weakening and rupture of atherosclerotic plaques. Biochem. Pharmacol.66, 1493–1498 (2003). ArticleCASPubMed Google Scholar
Piedrahita, J. A., Zhang, S. H., Hagaman, J. R., Oliver, P. M. & Maeda, N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl Acad. Sci. USA89, 4471–4475 (1992). ArticleCASPubMedPubMed Central Google Scholar
Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell71, 343–353 (1992). ArticleCASPubMed Google Scholar
Zhang, S. H., Reddick, R. L., Piedrahita, J. A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science258, 468–471 (1992). ArticleCASPubMed Google Scholar
Bresalier, R. S. et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med.352, 1092–1102 (2005). ArticleCASPubMed Google Scholar
Kerr, D. J. et al. Rofecoxib and cardiovascular adverse events in adjuvant treatment of colorectal cancer. N. Engl. J. Med.357, 360–369 (2007). ArticleCASPubMed Google Scholar
Home, P. D. et al. Rosiglitazone evaluated for cardiovascular outcomes — an interim analysis. N. Engl. J. Med.357, 28–38 (2007). ArticleCASPubMed Google Scholar
Nissen, S. E. & Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med.356, 2457–2471 (2007). ArticleCASPubMed Google Scholar
Riad, A. et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J. Immunol.180, 6954–6961 (2008). ArticleCASPubMed Google Scholar
Ha, T. et al. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovasc. Res.68, 224–234 (2005). ArticleCASPubMed Google Scholar
Hua, F. et al. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J. Immunol.178, 7317–7324 (2007). ArticleCASPubMed Google Scholar
Zhu, X. et al. MyD88 and NOS2 are essential for toll-like receptor 4-mediated survival effect in cardiomyocytes. Am. J. Physiol.291, H1900–H1909 (2006). CAS Google Scholar
Boraschi, D. & Tagliabue, A. The interleukin-1 receptor family. Vitam. Horm.74, 229–254 (2006). ArticleCASPubMed Google Scholar
Watters, T. M., Kenny, E. F. & O'Neill, L. A. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol. Cell Biol.85, 411–419 (2007). ArticleCASPubMed Google Scholar
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell124, 783–801 (2006). ArticleCASPubMed Google Scholar
Priestle, J. P., Schar, H. P. & Grutter, M. G. Crystallographic refinement of interleukin 1β at 2.0 Å resolution. Proc. Natl Acad. Sci. USA86, 9667–9671 (1989). ArticleCASPubMedPubMed Central Google Scholar
Allan, S. M., Tyrrell, P. J. & Rothwell, N. J. Interleukin-1 and neuronal injury. Nature Rev. Immuno.5, 629–640 (2005). ArticleCAS Google Scholar
Nicklin, M. J. et al. A sequence-based map of the nine genes of the human interleukin-1 cluster. Genomics79, 718–725 (2002). ArticleCASPubMed Google Scholar
Taylor, S. L., Renshaw, B. R., Garka, K. E., Smith, D. E. & Sims, J. E. Genomic organization of the interleukin-1 locus. Genomics79, 726–733 (2002). ArticleCASPubMed Google Scholar
Dale, M. & Nicklin, M. J. Interleukin-1 receptor cluster: gene organization of IL1R2, IL1R1, IL1RL2 (IL-1Rrp2), IL1RL1 (T1/ST2), and IL18R1 (IL-1Rrp) on human chromosome 2q. Genomics57, 177–179 (1999). ArticleCASPubMed Google Scholar
Farrar, J. D., Asnagli, H. & Murphy, K. M. T helper subset development: roles of instruction, selection, and transcription. J. Clin. Invest.109, 431–435 (2002). ArticleCASPubMedPubMed Central Google Scholar
Smithgall, M. D. et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int. Immunol. 11 June 2008 (doi:10.1093/intimm/dxn060). ArticleCASPubMed Google Scholar
Cherry, W. B., Yoon, J., Bartemes, K. R., Iijima, K. & Kita, H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol.121, 1484–1490 (2008). ArticleCASPubMedPubMed Central Google Scholar
Palmer, G. et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine42, 358–364 (2008). ArticleCASPubMed Google Scholar
Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest.56, 56–64 (1975). ArticleCASPubMedPubMed Central Google Scholar
Mann, D. L. & Bristow, M. R. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation111, 2837–2849 (2005). ArticlePubMed Google Scholar
Frey, N. & Olson, E. N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol.65, 45–79 (2003). ArticleCASPubMed Google Scholar