Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond (original) (raw)
Spivak, J. L. The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin. Hematol.41, 1–5 (2004). ArticleCASPubMed Google Scholar
Tefferi, A. & Vardiman, J. W. Classification and diagnosis of myeloproliferative neoplasms: the World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia22, 14–22 (2008). ArticleCASPubMed Google Scholar
Spivak, J. L. Polycythemia vera: myths, mechanisms, and management. Blood100, 4272–4290 (2002). ArticleCASPubMed Google Scholar
Beer, P. A. & Green, A. R. Pathogenesis and management of essential thrombocythemia. Hematology Am. Soc. Hematol. Educ. Program2009, 621–628 (2009). Article Google Scholar
Finazzi, G. & Barbui, T. How I treat patients with polycythemia vera. Blood109, 5104–5111 (2007). ArticleCASPubMed Google Scholar
Passamonti, F. et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood115, 1703–1708 (2010). ArticleCASPubMed Google Scholar
Schindler, C. & Darnell, J. E. Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem.64, 621–651 (1995). ArticleCASPubMed Google Scholar
Prchal, J. F. & Axelrad, A. A. Letter: Bone-marrow responses in polycythemia vera. N. Engl. J. Med.290, 1382 (1974). CASPubMed Google Scholar
Lutton, J. D. & Levere, R. D. Endogenous erythroid colony formation by peripheral blood mononuclear cells from patients with myelofibrosis and polycythemia vera. Acta Haematol.62, 94–99 (1979). ArticleCASPubMed Google Scholar
Adamson, J. W., Fialkow, P. J., Murphy S., Prchal, J. F. & Steinmann, L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N. Engl. J. Med.295, 913–916 (1976). ArticleCASPubMed Google Scholar
Gilliland, D. G., Blanchard, K. L., Levy J., Perrin S. & Bunn, H. F. Clonality in myeloproliferative disorders: analysis by means of the polymerase chain reaction. Proc. Natl Acad. Sci. USA88, 6848–6852 (1991). ArticleCASPubMedPubMed Central Google Scholar
el Kassar, N., Hetet, G., Li, Y., Briere J. & Grandchamp, B. Clonal analysis of haemopoietic cells in essential thrombocythaemia. Br. J. Haematol.90, 131–137 (1995). ArticleCASPubMed Google Scholar
Tsukamoto, N. et al. Clonality in chronic myeloproliferative disorders defined by X-chromosome linked probes: demonstration of heterogeneity in lineage involvement. Br. J. Haematol.86, 253–258 (1994). ArticleCASPubMed Google Scholar
Neubauer, H. et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell93, 397–409 (1998). ArticleCASPubMed Google Scholar
Parganas, E. et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell93, 85–395 (1998). Article Google Scholar
Levine, R. L., Pardanani, A., Tefferi, A. & Gilliland, D. G. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nature Rev. Cancer7, 673–683 (2007). ArticleCAS Google Scholar
Moliterno, A. R., Hankins, W. D. & Spivak, J. L. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N. Engl. J. Med.338, 572–580 (1998). ArticleCASPubMed Google Scholar
Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet365, 1054–1061 (2005). ArticleCASPubMed Google Scholar
James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature434, 1144–1148 (2005). ArticleCASPubMed Google Scholar
Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med.352, 1779–1790 (2005). ArticleCASPubMed Google Scholar
Levine, R. L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell7, 387–397 (2005). ArticleCASPubMed Google Scholar
Zhao, R. et al. Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem.280, 22788–22792 (2005). References 18–22 provide the first description of the recurrent somatic mutation (JAK2V617F) in patients with PV, PMF and ET, thus molecularly linking all three disorders. ArticleCASPubMed Google Scholar
Lu, X. et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc. Natl Acad. Sci. USA102, 18962–18967 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dusa, A. et al. Substitution of pseudokinase domain residue Val-617 by large non-polar amino acids causes activation of JAK2. J. Biol. Chem.283, 12941–12948 (2008). ArticleCASPubMed Google Scholar
Scott, L. M. et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med.356, 459–468 (2007). This is the first description of mutations mapping to exon 12 of the JAK2 gene in patients with PV who do not carry the JAK2V617F mutation. ArticleCASPubMedPubMed Central Google Scholar
Pietra, D. et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood111, 1686–1689 (2008). ArticleCASPubMed Google Scholar
Pardanani, A., Lasho, T. L., Finke, C., Hanson, C. A. & Tefferi, A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia21, 1960–1963 (2007). ArticleCASPubMed Google Scholar
Wang, Y. L. et al. JAK2 mutations are present in all cases of polycythemia vera. Leukemia22, 1289 (2008). ArticleCASPubMed Google Scholar
Jones, A. V. et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nature Genet.41, 446–449 (2009). ArticleCASPubMed Google Scholar
Kilpivaara, O. et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2 _V617F_-positive myeloproliferative neoplasms. Nature Genet.41, 455–459 (2009). ArticleCASPubMed Google Scholar
Olcaydu, D. et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genet.41, 450–454 (2009). References 29–31 describe the association between a specific haplotype and a high susceptibility risk to developing JAK2V617F-positive MPNs. ArticleCASPubMed Google Scholar
Saharinen, P., Takaluoma, K. & Silvennoinen, O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell Biol.20, 3387–3395 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lucet, I. S. et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor. Blood107, 176–183 (2006). ArticleCASPubMed Google Scholar
Silva, M. et al. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N. Engl. J. Med.338, 564–571 (1998). ArticleCASPubMed Google Scholar
Jamieson, C. H. et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc. Natl Acad. Sci. USA103, 6224–6229 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ishii, T., Bruno, E., Hoffman R. & Xu, M. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood108, 3128–3134 (2006). ArticleCASPubMed Google Scholar
Delhommeau, F. et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood109, 71–77 (2007). ArticleCASPubMed Google Scholar
Lacout, C. et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood108, 1652–1660 (2006). ArticleCASPubMed Google Scholar
Wernig, G. et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood107, 4274–4281 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lippert, E. et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood108, 1865–1867 (2006). ArticleCASPubMed Google Scholar
Tiedt, R. et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood111, 3931–3940 (2008). ArticleCASPubMed Google Scholar
Nussenzveig, R. H. et al. Imatinib mesylate therapy for polycythemia vera: final result of a phase II study initiated in 2009. Int. J. Hematol.90, 58–63 (2001). ArticleCAS Google Scholar
Shi, J. et al. An open-label assessment of the effects of CYP3A4 inhibitors on the PK/PD of INCB018424 in healthy subjects. J. Clin. Pharmacol.49, (Abstr. 10) (2009).
Shi, J. et al. An open-label assessment of the effects of rifampin, a potent CYP3A4 inducer on the PK/PD of INCB018424 in healthy subjects. J. Clin. Pharmacol.49, (Abstr. 9) (2009).
Verstovsek, S. et al. INCB018424, an oral, selective JAK2 inhibitor, shows significant clinical activity in a phase I/II study in patients with primary myelofibrosis (PMF) and post polycythemia vera/essential thrombocythemia myelofibrosis (post-PV/ET MF). Blood110, Abstr. 558 (2007).
Verstovsek, S. et al. Safety and efficacy of a JAK1 & JAK2 inhibitor, INCB018424, in myelofibrosis. N. Engl. J. Med.363, 1117–1127 (2010). This report describes the remarkable clinical activity of the oral JAK1 and JAK2 inhibitor INCB018424 (now known as ruxolitinib) in patients with post-ET or post-PV myelofibrosis. ArticleCASPubMedPubMed Central Google Scholar
Verstovsek, S. et al. A phase 2 study of INCB018424, an oral, selective JAK1/JAK2 inhibitor, in patients with advanced polycythemia vera and essential thrombocythemia refractory to hydroxyurea. Blood114, Abstr. 311 (2009).
Barosi, G. et al. Response criteria for essential thrombocythemia and polycythemia vera: results of a European LeukemiaNet consensus conference. Blood113, 4829–4833 (2009). ArticleCASPubMed Google Scholar
Wernig, G. et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell13, 311–320 (2008). ArticleCASPubMed Google Scholar
Pardanani, A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia22, 23–30 (2008). ArticlePubMed Google Scholar
Pardanani, A. et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia21, 1658–1668 (2007). ArticleCASPubMed Google Scholar
Pardanani, A. et al. A phase I study of TG101348, a selective JAK2 inhibitor, in myelofibrosis: clinical response is accompanied by significant reduction in JAK2V617F allele burden. Blood114, Abstr. 755 (2009).
Hexner, E. O. et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood111, 5663–5671 (2008). ArticleCASPubMedPubMed Central Google Scholar
Knapper, S. et al. A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood108, 3262–3270 (2006). ArticleCASPubMed Google Scholar
Smith, B. D. et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood103, 3669–3676 (2004). ArticleCASPubMed Google Scholar
Marshall, J. L. et al. Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor. Invest. New Drugs23, 31–37 (2005). ArticleCASPubMed Google Scholar
Santos, F. P. et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood115, 1131–1136 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hexner, E. et al. A multicenter, open label Phase I/II study of CEP701 (Lestaurtinib) in adults with myelofibrosis; a report on phase I: a study of the myeloproliferative disorders research consortium. Blood114, Abstr. 754 (2009).
Paquette, R. et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with polycythemia vera. Blood112, Abstr. 2810 (2008).
Shah, N. et al. A phase I study of XL019, a selective JAK2 inhibitor, in patients with primary myelofibrosis, post-polycythemia vera, or post-essential thrombocythemia myelofibrosis. Blood112, Abstr. 98 (2008).
Verstovsek, S. et al. Phase I dose-escalation trial of SB1518, a novel JAK2/FLT3 inhibitor, in acute and chronic myeloid diseases, including primary or post-essential thrombocythemia/polycythemia vera myelofibrosis. Blood114, Abstr. 3905 (2009).
Hedvat, M. et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell16, 487–497 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pardanani, A. et al. CYT387, a selective JAK1/JAK2 inhibitor: in vitro assessment of kinase selectivity and preclinical studies using cell lines and primary cells from polycythemia vera patients. Leukemia23, 1441–1445 (2009). ArticleCASPubMed Google Scholar
Tyner, J. W. et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood115, 5232–5240 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pardanani, A. et al. A Phase I/II study of CYT387, an oral JAK-1/2 inhibitor, in myelofibrosis: significant response rates in anemia, splenomegaly, and constitutional symptoms. Blood117, Abstr. 460 (2010).
Changelian, P. S. et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science302, 875–878 (2003). ArticleCASPubMed Google Scholar
Williams, N. K. et al. Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol.387, 219–232 (2009). ArticleCASPubMed Google Scholar
Jiang, J. K. et al. Examining the chirality, conformation and selective kinase inhibition of 3-(3R, 4R)-4-methyl-3-(methyl(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)amino)piperi din-1-yl)-3-oxopropanenitrile (CP-690,550). J. Med. Chem.51, 8012–8018 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yabu, J. M. & Vincenti, F. Novel immunosuppression: small molecules and biologics. Semin. Nephrol.27, 479–486 (2007). ArticleCASPubMed Google Scholar
Manshouri, T. et al. The JAK kinase inhibitor CP-690, 550 suppresses the growth of human polycythemia vera cells carrying the JAK2V617F mutation. Cancer Sci.99, 1265–1273 (2008). ArticleCASPubMed Google Scholar
Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science278, 1309–1312 (1997). ArticleCASPubMed Google Scholar
Peeters, P. et al. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood90, 2535–2540 (1997). CASPubMed Google Scholar
Schwaller, J. et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J.17, 5321–5333 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ho, J. M., Beattie, B. K., Squire, J. A., Frank, D. A. & Barber, D. L. Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood93, 4354–4364 (1999). CASPubMed Google Scholar
Ward, A. C., Touw, I. & Yoshimura, A. The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood95, 19–29 (2000). CASPubMed Google Scholar
Mullighan, C. G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA106, 9414–9418 (2009). ArticlePubMedPubMed Central Google Scholar
Walters, D. K. et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell10, 65–75 (2006). ArticleCASPubMed Google Scholar
Lee, J. W. et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene25, 1434–1436 (2006). ArticleCASPubMed Google Scholar
Jelinek, J. et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood106, 3370–3373 (2005). ArticleCASPubMedPubMed Central Google Scholar
Williams, R. T., Roussel, M. F. & Sherr, C. J. Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA103, 6688–6693 (2006). ArticleCASPubMedPubMed Central Google Scholar
Samanta, A. K. et al. Jak2 inhibition deactivates Lyn kinase through the SET-PP2A-SHP1 pathway, causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients. Oncogene28, 1669–1681 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vannucchi, A. M. et al. Clinical profile of homozygous JAK2V617F mutation in patients with polycythemia vera or essential thrombocythemia. Blood110, 840–846 (2007). ArticleCASPubMed Google Scholar
Leonard, W. J. Cytokines and immunodeficiency diseases. Nature Rev. Immunol.1, 200–208 (2001). ArticleCAS Google Scholar
Kawamura, M. et al. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc. Natl Acad. Sci. USA91, 6374–6378 (1994). ArticleCASPubMedPubMed Central Google Scholar
O'Shea, J. J., Pesu, M., Borie, D. C. & Changelian, P. S. A new modality for immunosuppression: targeting the JAK/STAT pathway. Nature Rev. Drug Discov.3, 555–564 (2004). ArticleCAS Google Scholar
Fridman, J. S. et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J. Immunol.184, 5298–5307 (2010). ArticleCASPubMed Google Scholar
Kremer, J. M. et al. The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis: results of a double-blind, placebo-controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo. Arthritis Rheum.60, 1895–1905 (2009). ArticleCASPubMed Google Scholar
Coombs, J. H. et al. Improved pain, physical functioning and health status in patients with rheumatoid arthritis treated with CP-690,550, an orally active Janus kinase (JAK) inhibitor: results from a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis.69, 413–416 (2010). ArticleCASPubMed Google Scholar
Fleischmann, R. et al. Safety and efficacy after 24 week (wk) dosing of the oral JAK inhibitor CP-690550 (CP) as monotherapy in patients (pts) with active rheumatoid arthritis (RA). Arthritis Rheum.60 (Suppl.10), 1924 (2009). Google Scholar
Kremer, J. et al. Safety and efficacy after 24 week (WK) dosing of the oral JAK inhibitor CP-690550 (CP) in combination with methrotrexate (MTX) in patients (PTS) with active rheumatoid arthritis (RA). Arthritis Rheum.60 (Suppl.10), 1925 (2009). References 89–92 describe a series of randomized, double-blind Phase II studies demonstrating remarkable activity of the potent JAK inhibitor tasocitinib (CP 690550) in patients with rheumatoid arthritis. Google Scholar
Williams, W. et al. A randomized placebo-controlled study of INCB018424, a selective Janus kinase 1 & 2 (JAK1 & 2) inhibitor in rheumatoid arthritis (RA). Arthritis Rheum.58, Abstr. 714 (2008).
Punwani, N. et al. Efficacy and safety of topical INCB018424, a selective Janus kinase 1 and 2 (JAK1 and 2) inhibitor in psoriasis. J. Am. Acad. Dermatol.60, Abstr. 176 (2009).
Callis Duffin, K. et al. JAK 1 / Jak 2 inhibition: a novel mechanism in the treatment of chronic plaque psoriasis. in Society for Investigative Dermatology Meeting,Atlanta, Georgia, USA (2010). Google Scholar
Pesu, M. et al. Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol. Rev.203, 127–142 (2005). ArticleCASPubMed Google Scholar
Quaedackers, M. E. et al. Monitoring of the immunomodulatory effect of CP-690,550 by analysis of the JAK/STAT pathway in kidney transplant patients. Transplantation88, 1002–1009 (2009). ArticleCASPubMed Google Scholar
Busque, S. et al. Calcineurin-inhibitor-free immunosuppression based on the JAK inhibitor CP-690,550: a pilot study in de novo kidney allograft recipients. Am. J. Transplant9, 1936–1945 (2009). ArticleCASPubMed Google Scholar
van Gurp, E. A. et al. The effect of the JAK inhibitor CP-690,550 on peripheral immune parameters in stable kidney allograft patients. Transplantation87, 79–86 (2009). ArticleCASPubMed Google Scholar
van Gurp, E. et al. Phase 1 dose-escalation study of CP-690550 in stable renal allograft recipients: preliminary findings of safety, tolerability, effects on lymphocyte subsets and pharmacokinetics. Am. J. Transplant.8, 1711–1718 (2008). ArticleCASPubMed Google Scholar
Borie, D. C. et al. Combined use of the JAK3 inhibitor CP-690,550 with mycophenolate mofetil to prevent kidney allograft rejection in nonhuman primates. Transplantation80, 1756–1764 (2005). ArticleCASPubMed Google Scholar
Tefferi, A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia24, 1128–1138 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood114, 5024–5033 (2009). ArticleCASPubMedPubMed Central Google Scholar
Marubayashi, S. et al. HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J. Clin. Invest.120, 3578–3593 (2010). ArticleCASPubMedPubMed Central Google Scholar
Di Nisio, M. et al. The haematocrit and platelet target in polycythemia vera. Br. J. Haematol.136, 249–259 (2007). ArticlePubMed Google Scholar
Najean, Y. & Rain, J. D. Treatment of polycythemia vera: use of 32P alone or in combination with maintenance therapy using hydroxyurea in 461 patients greater than 65 years of age. The French Polycythemia Study Group. Blood89, 2319–2327 (1997). CASPubMed Google Scholar
Cortelazzo, S. et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N. Engl. J. Med.332, 1132–1136 (1995). ArticleCASPubMed Google Scholar
Harrison, C. N. et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N. Engl. J. Med.353, 33–45 (2005). ArticleCASPubMed Google Scholar
Barbui, T. et al. Practice guidelines for the therapy of essential thrombocythemia. A statement from the Italian Society of Hematology, the Italian Society of Experimental Hematology and the Italian Group for Bone Marrow Transplantation. Haematologica89, 215–232 (2004). CASPubMed Google Scholar
Arana-Yi, C. et al. Advances in the therapy of chronic idiopathic myelofibrosis. Oncologist11, 929–943 (2006). ArticleCASPubMed Google Scholar
Mesa, R. A. How I treat symptomatic splenomegaly in patients with myelofibrosis. Blood113, 5394–5400 (2009). ArticleCASPubMed Google Scholar
Quintás-Cardama, A. et al. Lenalidomide plus prednisone results in durable clinical, histopathologic, and molecular responses in patients with myelofibrosis. J. Clin. Oncol.27, 4760–4766 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mesa, R. A. et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase-2 trial E4903. Blood116, 4436–4438 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cervantes, F. et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood113, 2895–2901 (2009). ArticleCASPubMed Google Scholar
Bacigalupo, A. et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant.45, 458–463 (2010). ArticleCASPubMed Google Scholar
Stewart, W. A. et al. The role of allogeneic SCT in primary myelofibrosis: a British Society for Blood and Marrow Transplantation study. Bone Marrow Transplant.45, 1587–1593 (2010). ArticleCASPubMed Google Scholar
Kroger, N. et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood114, 5264–5270 (2009). ArticleCASPubMed Google Scholar
Kroger, N. & Mesa, R. A. Choosing between stem cell therapy and drugs in myelofibrosis. Leukemia22, 474–486 (2008). ArticlePubMed Google Scholar
Rodig, S. J. et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell93, 373–383 (1998). ArticleCASPubMed Google Scholar
Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science270, 800–802 (1995). ArticleCASPubMed Google Scholar
Karaghiosoff, M. et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity13, 549–560 (2000). ArticleCASPubMed Google Scholar
Shimoda, K. et al. Tyk2 plays a restricted role in IFNα signaling, although it is required for IL-12-mediated T cell function. Immunity13, 561–571 (2000). ArticleCASPubMed Google Scholar
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006). ArticleCASPubMedPubMed Central Google Scholar
Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet.39, 1329–1337 (2007). ArticleCASPubMed Google Scholar
Pardanani, A. D. et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood108, 3472–3476 (2006). ArticleCASPubMed Google Scholar
Vannucchi, A. M. et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood112, 844–847 (2008). ArticleCASPubMed Google Scholar
Beer, P. A. et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood112, 141–149 (2008). ArticleCASPubMed Google Scholar
Chaligne, R. et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood110, 3735–3743 (2007). ArticleCASPubMed Google Scholar
Oh, S. T. et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood116, 988–992 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lasho, T. L., Pardanani, A. & Tefferi, A. LNK mutations in JAK2 mutation-negative erythrocytosis. N. Engl. J. Med.363, 1189–1190 (2010). ArticleCASPubMed Google Scholar
Dupont, S. et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood110, 1013–1021 (2007). ArticleCASPubMed Google Scholar
Theocharides, A. et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood110, 375–379 (2007). ArticleCASPubMed Google Scholar
Kralovics, R. et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood108, 1377–1380 (2006). ArticleCASPubMed Google Scholar
Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med.360, 2289–2301 (2009). This study is the first to describe mutations in TET2 in patients with myeloid cancers and proposes TET2 mutations as antecedent molecular events to the acquisition of the JAK2V617F mutation. ArticlePubMed Google Scholar
Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324, 930–935 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature466, 1129–1133 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tefferi, A. et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia23, 905–911 (2009). ArticleCASPubMedPubMed Central Google Scholar
Carbuccia, N. et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia23, 2183–2186 (2009). ArticleCASPubMed Google Scholar
Abdel-Wahab, O. et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res.70, 447–452 (2010). ArticleCASPubMedPubMed Central Google Scholar
Grand, F. H. et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood113, 6182–6192 (2009). ArticleCASPubMed Google Scholar
Green, A. & Beer, P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N. Engl. J. Med.362, 369–370 (2010). ArticleCASPubMed Google Scholar
Pardanani, A. et al. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia24, 1146–1151 (2010). ArticleCASPubMed Google Scholar
Tefferi, A. et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia24, 1302–1309 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jager, R. et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia24, 1290–1298 (2010). ArticleCASPubMed Google Scholar
Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet.42, 722–726 (2010). ArticleCASPubMed Google Scholar
Bumm, T. G. et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res.66, 11156–11165 (2006). ArticleCASPubMed Google Scholar
Mullally, A. et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell17, 584–596 (2010). ArticleCASPubMedPubMed Central Google Scholar
Akada, H. et al. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood115, 3589–3597 (2010). References 152 and 153 describe mouse models of JAK2V617F-positive MPNs in which the mutant JAK2V617F is expressed from its endogenous promoter, and the authors suggest that JAK2 inhibitor therapy does not eradicate the disease-initiating cells. ArticleCASPubMedPubMed Central Google Scholar
Morgan, K. J. & Gilliland, D. G. A role for JAK2 mutations in myeloproliferative diseases. Annu. Rev. Med.59, 213–222 (2008). ArticleCASPubMed Google Scholar
Roder, S., Steimle, C., Meinhardt, G. & Pahl, H. L. STAT3 is constitutively active in some patients with polycythemia rubra vera. Exp. Hematol.29, 694–702 (2001). ArticleCASPubMed Google Scholar
Komura, E. et al. Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression. Exp. Hematol.31, 622–630 (2003). ArticleCASPubMed Google Scholar
Jamieson, C. H., Barroga, C. F. & Vainchenker, W. P. Miscreant myeloproliferative disorder stem cells. Leukemia22, 2011–2019 (2008). ArticlePubMed Google Scholar
Kota, J., Caceres, N. & Constantinescu, S. N. Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia22, 1828–1840 (2008). ArticlePubMed Google Scholar
Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood115, 3109–3117 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ugo, V. et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp. Hematol.32, 179–187 (2004). ArticleCASPubMed Google Scholar
Shi, S. et al. JAK signaling globally counteracts heterochromatic gene silencing. Nature Genet.38, 1071–1076 (2006). ArticleCASPubMed Google Scholar
Liu, P. C. et al. Combined inhibition of Janus kinase 1/2 for the treatment of JAK2V617F-driven neoplasms: selective effects on mutant cells and improvements in measures of disease severity. Clin. Cancer Res.15, 6891–6900 (2009). ArticleCASPubMed Google Scholar
Baffert, F. et al. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol. Cancer Ther.9, 1945–1955 (2010). ArticleCASPubMed Google Scholar
Passamonti, F. et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 11 Jan 2011 [epub ahead of print]
Moliterno, A. R. et al. An open-label study of CEP-701 in patients with JAK2 V617F-positive PV and ET: update of 39 enrolled patients. Blood114, Abstr. 753 (2009).
Seymour, F. et al. First report of the phase-I study of the novel oral JAK2 inhibitor sb1518 in patients with myelofibrosis. Haematologica95 (Suppl. 2), Abstr. 1144 (2010).