Finding the sweet spot: the role of nature and nurture in medicinal chemistry (original) (raw)
Madea, B., Mußhoff, F. & Berghaus, G. (eds) Verkehrsmedizin: Fahreignung, Fahrsicherheit, Unfallrekonstruktion 435 (Deutscher Ärzte-Verlag, Köln, 2007). Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.23, 3–25 (1997). CAS Google Scholar
Wenlock, M. C., Austin, R. P., Barton, P., Davis, A. M. & Leeson, P. D. A comparison of physiochemical property profiles of development and marketed oral drugs. J. Med. Chem.46, 1250–1256 (2003). ArticleCASPubMed Google Scholar
Leeson, P. D. & Davis, A. M. Time-related differences in the physical property profiles of oral drugs. J. Med. Chem.47, 6338–6348 (2004). ArticleCASPubMed Google Scholar
Mannhold, R., Poda, G. I., Ostermann, C. & Tetko, I. V. Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci.98, 861–893 (2009). ArticleCASPubMed Google Scholar
Oprea, T. I., Davis, A. M., Teague, S. J. & Leeson, P. D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci.41, 1308–1315 (2001). ArticleCASPubMed Google Scholar
Hann, M. M., Leach, A. R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci.41, 856–864 (2001). ArticleCASPubMed Google Scholar
Hann, M. M. & Oprea, T. I. Pursuing the leadlikeness concept in pharmaceutical research. Curr. Opin. Chem. Biol.8, 255–263 (2004). ArticleCASPubMed Google Scholar
Leeson, P. D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Rev. Drug Discov.6, 881–890 (2007). ArticleCAS Google Scholar
Waring, M. Defining optimum lipophilicity and molecular weight ranges for drug candidates — molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett.19, 2844–2851 (2009). ArticleCASPubMed Google Scholar
Gleeson, M. P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem.51, 817–834 (2008). ArticleCASPubMed Google Scholar
Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Rev. Drug Discov.10, 197–208 (2011). ArticleCAS Google Scholar
Keserü, G. M. 5th Drug Design Lead Discovery Conference 2009: lead finding strategies and optimization case studies. Drugs Future35, 143–153 (2010). Article Google Scholar
Hann, M. M. Molecular obesity, potency and other addictions in drug discovery. MedChemComm.2, 349–355 (2011). ArticleCAS Google Scholar
Hopkins, A. L., Groom, C. R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today9, 430–431 (2004). ArticlePubMed Google Scholar
Keserü, G. M. & Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nature Rev. Drug Discov.8, 203–212 (2009). Article Google Scholar
Ferenczy, G. G. & Keserü, G. M. Thermodynamics guided lead discovery and optimization. Drug Discov. Today15, 919–932 (2010). ArticleCASPubMed Google Scholar
Morphy, R. The influence of target family and functional activity on the physicochemical properties of pre-clinical compounds. J. Med. Chem.49, 2969–2978 (2006). ArticleCASPubMed Google Scholar
Vieth, M. & Sutherland, J. J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem.49, 3451–3453 (2006). ArticleCASPubMed Google Scholar
Paolini, G. V., Shapland, R. H. B., van Hoorn, W. P., Mason, J. S. & Hopkins, A. L. Global mapping of pharmacological space. Nature Biotech.24, 805–815 (2006). ArticleCAS Google Scholar
Southan, C., Boppana, K., Jagarlapudi, S. A. R. P. & Muresan, S. Analysis of in vitro bioactivity data extracted from drug discovery literature and patents: ranking 1654 human protein targets by assayed compounds and molecular scaffolds. J. Cheminform.3, 14 (2011). ArticlePubMedPubMed Central Google Scholar
Egner, U. & Hillig, R. C. A structural biology view of target drugability. Expert Opin. Drug Discov.3, 391–401 (2008). ArticleCASPubMed Google Scholar
Edfeldt, F. N. B., Folmer, R. H. A. & Breeze, A. L. Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov. Today16, 284–287 (2011). ArticleCASPubMed Google Scholar
Hajduk, P. J., Huth, J. R. & Tse, C. Predicting protein druggability. Drug Discov. Today10, 1675–1682 (2005). ArticleCASPubMed Google Scholar
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov.10, 507–519 (2011). ArticleCAS Google Scholar
Merelli, X., Bourgeas, R. & Roche, P. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr. Opin. Chem. Biol.15, 1–7 (2011). Article Google Scholar
Alex, A., Millan, D. S., Perez, M., Wakenhut, F. & Whitlock, G. A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm.2, 669–674 (2011). ArticleCAS Google Scholar
Leeson, P. D. & St-Gallay, S. A. The influence of the 'organizational factor' on compound quality in drug discovery. Nature Rev. Drug Discov.10, 749–765 (2011). ArticleCAS Google Scholar
Tyrchan, C., Blomberg, N., Engkvist, O., Kogej, T. & Muresan, S. Physicochemical property profiles of marketed drugs, clinical candidates and bioactive compounds. Bioorg. Med. Chem. Lett.19, 6943–6947 (2009). ArticleCASPubMed Google Scholar
Murray, C. W. & Rees, D. C. The rise of fragment-based drug discovery. Nature Chem.1, 187–192 (2009). ArticleCAS Google Scholar
Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nature Rev. Drug Discov.10, 188–195 (2011). ArticleCAS Google Scholar
Leach, A. R. & Hann, M. M. Molecular complexity and fragment-based drug discovery: ten years on. Curr. Opin. Chem. Biol.15, 489–496 (2011). ArticleCASPubMed Google Scholar
Olsson, T. S., Williams, M. A., Pitt, W. R. & Ladbury, J. E. The thermodynamics of protein–ligand interaction and solvation: insights for ligand design. J. Mol. Biol.384, 1002–1017 (2008). ArticleCASPubMed Google Scholar
Durrant, J. D. & McCammon, J. A. BINANA: a novel algorithm for ligand-binding characterization. J. Mol. Graph. Model.29, 888–893 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ladbury, J. E., Klebe, G. & Freire, E. Adding calorimetric data to decision making in lead discovery: a hot tip. Nature Rev. Drug Discov.9, 23–27 (2010). ArticleCAS Google Scholar
Brandt, T. et al. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties. J. Mol. Biol.405, 1170–1187 (2011). ArticleCASPubMed Google Scholar
Snyder, P. W. et al. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc. Natl Acad. Sci. USA108, 17889–17894 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ferenczy, G. G. & Keserü, G. M. Enthalpic efficiency of ligand binding. J. Chem. Inf. Model.50, 1536–1541 (2010). ArticleCASPubMed Google Scholar
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov.5, 993–996 (2006). ArticleCAS Google Scholar
Morphy, R. & Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem.48, 6523–6543 (2005). ArticleCASPubMed Google Scholar
Olsson, T. S., Ladbury, J. E., Pitt, W. R. & Williams, M. A. Extent of enthalpy-entropy compensation in protein–ligand interactions. Protein Sci.20, 1607–1618 (2011). ArticleCASPubMedPubMed Central Google Scholar
Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug–target residence time and its implications for lead optimization. Nature Rev. Drug Discov.5, 730–739 (2006). ArticleCAS Google Scholar
Schmidtke, P., Luque, F. J., Murray, J. B. & Barril, X. Shielded hydrogen bonds as structural determinants of binding kinetics: application in drug design. J. Am. Chem. Soc.133, 18903–18910 (2011). ArticleCASPubMed Google Scholar
Reynolds, C. H., Tounge, B. A. & Bembenek, S. D. Ligand binding efficiency: trends, physical basis, and implications. J. Med. Chem.51, 2432–2438 (2008). ArticleCASPubMed Google Scholar
Nissink, J. W. M. Simple size-independent measure of ligand efficiency. J. Chem. Inf. Model.49, 1617–1622 (2009). ArticleCASPubMed Google Scholar
Mortenson, P. N. & Murray, C. W. Assessing the lipophilicity of fragments and early hits. J. Comput. Aided Mol. Des.25, 663–667 (2011). ArticleCASPubMed Google Scholar
Wager, T. T. et al. Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem. Neurosci.1, 420–434 (2010). CASPubMedPubMed Central Google Scholar
Tarcsay, A., Nyiri, K. & Keserü, G. M. The impact of lipophilic efficiency on compound quality. J. Med. Chem.55, 1252–1260 (2012). ArticleCASPubMed Google Scholar
Wager, T. T., Hou, X., Verhoest, P. R. & Villalobos, A. Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci.1, 435–449 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dack, K. Reducing Attrition Risk: Evolution of an in silico 'Compound Safety Evaluator'. Designing Safer Medicines In Discovery Symposium (Society of Chemical Industry, London, 17 March 2011). Google Scholar
Braggio, S., Montanari, D., Rossi, T. & Ratti, E. Drug efficiency: a new concept to guide lead optimization programs towards the selection of better clinical candidates. Expert Opin. Drug Discov.5, 609–618 (2010). ArticleCASPubMed Google Scholar
Montanari, D. et al. Application of drug efficiency index in drug discovery: a strategy towards low therapeutic dose. Expert Opin. Drug Discov.6, 913–920 (2011). ArticleCASPubMed Google Scholar
Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying druglikeness and target druggability. Nature Chem.4, 90–98 (2012). ArticleCAS Google Scholar
Stepan, A. F. et al. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem. Res. Toxicol.24, 1345–1410 (2011). ArticleCASPubMed Google Scholar
Cooper, T. W., Campbell, I. B. & Macdonald, S. J. Factors determining the selection of organic reactions by medicinal chemists and the use of these reactions in arrays (small focused libraries). Angew. Chem. Int. Ed. Engl.49, 8082–8091 (2010). ArticleCASPubMed Google Scholar
Roughley, S. D. & Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem.54, 3451–3479 (2011). ArticleCASPubMed Google Scholar
Walters, W. P., Green, J., Weiss, J. R. & Murcko, M. A. What do medicinal chemists actually make? A 50-year retrospective. J. Med. Chem.54, 6405–6416 (2011). ArticleCASPubMed Google Scholar
Pitt, W. R., Parry, D. M., Perry, B. G. & Groom, C. R. Heteroaromatic rings of the future. J. Med. Chem.52, 2952–2963 (2009). ArticleCASPubMed Google Scholar
Darvas, F. et al. High pressure, high temperature reactions in continuous flow. Merging discovery and process chemistry. Chemistry Today27, 40–43 (2009). CAS Google Scholar
Wegner, J., Ceylan, S. & Kirschning, A. Ten key issues in modern flow chemistry. Chem. Commun. (Camb.)47, 4583–4592 (2011). ArticleCAS Google Scholar
Nadin, A., Hattotuwagama, C. & Churcher, I. Lead-oriented synthesis: a new opportunity for synthetic chemistry. Angew. Chem. Int. Ed. Engl.51, 1114–1122 (2011). Article Google Scholar
Tan, D. S. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nature Chem. Biol.1, 74–84 (2005). ArticleCAS Google Scholar
Jones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. Collective synthesis of natural products by means of organocascade catalysis. Nature475, 183–188 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hill, A. P. & Young, R. J. Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov. Today15, 648–655 (2010). ArticleCASPubMed Google Scholar
Young, R. J., Green, D. V., Luscombe, C. N. & Hill, A. P. Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discov. Today16, 822–830 (2011). ArticleCASPubMed Google Scholar
Hughes, J. D. et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett.18, 4872–4875 (2008). ArticleCASPubMed Google Scholar
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov.9, 203–214 (2010). ArticleCAS Google Scholar
Dimitri, N. An assessment of R&D productivity in the pharmaceutical industry. Trends Pharm. Sci.32, 683–685 (2011). ArticleCASPubMed Google Scholar
Butler, J. M. & Dressman, J. B. The developability classification system: application of biopharmaceutics concepts to formulation development. J. Pharm. Sci.99, 4940–4954 (2010). ArticleCASPubMed Google Scholar
Bennani, Y. Drug discovery in the next decade: innovation needed ASAP. Drug Discov. Today16, 779–792 (2011). ArticlePubMed Google Scholar
Abad-Zapatero, C. & Metz, J. T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today10, 464–469 (2005). ArticlePubMed Google Scholar
Orita, M., Ohno, K. & Niimi, T. Two 'golden ratio' indices in fragment-based drug discovery. Drug Discov. Today14, 321–328 (2009). ArticleCASPubMed Google Scholar