How were new medicines discovered? (original) (raw)
Munos, B. Lessons for 60 years of pharmaceutical innovation. Nature Rev. Drug Discov.8, 959–968 (2009). ArticleCAS Google Scholar
Paul, S. M. et al. How to improve R.&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov.9, 203–214 (2010). ArticleCAS Google Scholar
Lindsay, M. A. Target discovery. Nature Rev. Drug Discov.2, 831–838 (2003). ArticleCAS Google Scholar
Imming, P., Sinning, C. Meyer A. Drugs, their targets and the nature and number of drug targets. Nature Rev. Drug Discov.5, 821–834 (2006). ArticleCAS Google Scholar
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov.5, 993–996 (2006). ArticleCAS Google Scholar
Williams, M. Systems and integrative biology as alternative guises for pharmacology: prime time for an iPharm concept? Biochem. Pharmacol.70, 1707–1716 (2005). ArticleCASPubMed Google Scholar
Flordellis, C. S., Manolis, A. S., Paris, H. & Karabinis, A. Rethinking target discovery in polygenic diseases. Curr. Top. Med. Chem.6, 1791–1798 (2006). ArticleCASPubMed Google Scholar
Urban, J. D. et al. Functional selectivity and classical concepts of quantitative pharmacology J. Pharmacol. Exp. Ther.320, 1–13 (2007). Formalizes the concept of functional selectivity, whereby multiple unique ligands can bind to one receptor to initiate different responses. ArticleCASPubMed Google Scholar
Kenakin, T. & Miller, L. J. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on drug discovery. Pharmacol. Rev.62, 265–304 (2010). ArticleCASPubMedPubMed Central Google Scholar
Swinney, D. C. Biochemical mechanisms of drug action: what does it take for success? Nature Rev. Drug Discov.3, 801–808 (2004). Describes how the MMOA influences the therapeutic index and utility of a medicine and introduces biochemical efficiency as a metric to quantify this influence. ArticleCAS Google Scholar
Swinney, D. C. Biochemical mechanisms of new molecular entities (NMEs) approved by United States FDA during 2001–2004: mechanisms leading to optimal efficacy and safety. Curr. Top. Med. Chem.6, 461–478 (2006). ArticleCASPubMed Google Scholar
Swinney, D. C. Applications of binding kinetics to drug discovery: translation of binding mechanism to clinically differentiated therapeutic responses. Pharm. Med.22, 23–34 (2008). Article Google Scholar
Yun, C.H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA105, 2070–2075 (2008). Provides an illustration of how drug resistance could be overcome through an understanding of the MMOA. ArticleCASPubMedPubMed Central Google Scholar
Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature389, 753–758 (1997). Shows structurally how agonists and antagonists bind at the same site but with different binding modes that result in different responses. ArticleCASPubMed Google Scholar
Roth, G. J. & Majerus, P. W. The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction protein. J. Clin. Invest.56, 624–632 (1975). ArticleCASPubMedPubMed Central Google Scholar
Majerus, P. W., Broze, G. J. Jr, Miletich, J. P. & Tollefsen, D. M. in Goodman & Gilman's The pharmacological basis of therapeutics. (eds Hardman, J. G. & Limbird, L. E.) 1353 (McGraw-Hill, New York, 1996). Google Scholar
Copeland, R. A., Pompliano, D. L. & Meek, T. D. Drug-target residence time and its implications for lead optimization. Nature Rev. Drug Discov.5, 730–739 (2006). ArticleCAS Google Scholar
Timmino, P. J. & Copeland, R. A. Residence time of receptor–ligand complexes and its effect on biological function. Biochemistry47, 5481–5492 (2008). ArticleCAS Google Scholar
Lu, H. & Tonge, P. J. Drug-target residence time: critical information for lead optimization. Curr. Opin. Chem. Biol.14, 1–8 (2010). ArticleCAS Google Scholar
Johnson, D. S., Weerapana, E. & Cravatt, B. F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem.2, 949–964 (2010). ArticleCASPubMed Google Scholar
Ohlson, S. Designing transient binding drugs: a new concept for drug discovery. Drug Discov.Today13, 433–439 (2008). CAS Google Scholar
Lipton, S. A. Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nature Rev. Drug Discov.5, 160–170 (2006). ArticleCAS Google Scholar
Lipton, S. A. Pathology activated therapeutics for neuroprotection. Nature Rev. Neurosci.8, 803–808 (2007). Describes the principle that drugs should be activated by the pathological state that they are intended to inhibit. ArticleCAS Google Scholar
Changeux, J. P. Allosteric receptors: from electric organ to cognition. Annu. Rev. Pharmacol. Toxicol.50, 1–38 (2010). ArticleCASPubMed Google Scholar
Conn, J. P., Christopoulos, A. & Lindsley, C. W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Rev. Drug Discov.8, 41–54 (2009). ArticleCAS Google Scholar
Hanck, D. A. et al. Using lidocaine and benzocaine to link sodium channel molecular conformations to state-dependent antiarrhythic drug affinity. Circ. Res.105, 492–499 (2009). ArticleCASPubMedPubMed Central Google Scholar
Butterworth, J. F. & Strichartz, G. R. Molecular mechanisms of local anesthesia: a review. Anesthesiology72, 711–734 (1990). ArticleCASPubMed Google Scholar
Wilson, D. N. et al. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc. Natl Acad. Sci. USA105, 13339–13344 (2008). ArticlePubMedPubMed Central Google Scholar
Nemeth, E. F. Misconceptions about calcimimetics. Ann. NY Acad. Sci.1068, 471–476 (2006). Discusses lessons learned in the discovery of cinacalcet, with emphasis on the importance of using an understanding of physiology. ArticleCASPubMed Google Scholar
Salisbury, B. G. et al. Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461. Athlerosclerosis115, 45–63 (1995). ArticleCAS Google Scholar
Valentino, D. et al. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc. Natl Acad. Sci. USA90, 7894–7897 (1993). ArticleCASPubMedPubMed Central Google Scholar
Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod.70, 461–477 (2007). Describes the successes of natural products as a source for new drugs. ArticleCASPubMed Google Scholar
Deacon, C. F. Therapeutic strategies based on glucagon-like peptide-1. Diabetes53, 2181–2189 (2004). ArticleCASPubMed Google Scholar
Von Itzstein, M. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature363, 418–423 (1993). ArticleCASPubMed Google Scholar
Weibel, E. K., Hadvary, P., Hochuli, E., Kupfer, E. & Lengsfeld, H. Lipstatin, an inhibitor of pancreatic lipase produced by Streptomyces toxytricini. 1. Producing organism, fermentation, isolation and biological activity. J. Antibiot.40, 1081–1086 (1987). ArticleCAS Google Scholar
Kluter, D. J. New thrombopoietic growth factors. Blood109, 4607–4616 (2007). ArticleCAS Google Scholar
Remuzzi, G. et al. New therapeutics that antagonize endothelin: promises and frustrations. Nature Rev. Drug Discov.1, 986–1001 (2002). ArticleCAS Google Scholar
Wood, J. M. et al. Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem. Biophys. Res. Commun.308, 698–705 (2003). ArticleCASPubMed Google Scholar
Pommier, Y. et al. Integrase inhibitors to treat HIV/AIDS. Nature Rev. Drug Discov.4, 236–248 (2005). ArticleCAS Google Scholar
Espeseth, A. S. et al. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Natl Acad. Sci. USA97, 11244–11249 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lichtner, R. B. et al. Signaling-inactive epidermal growth factor receptor/ligand complexes in intact carcinoma cells by quinazoline kinase inhibitors. Cancer Res.61, 5790–5795 (2001). CASPubMed Google Scholar
Barker, A. J. et al. Studies leading to the identification of ZD1830 (Iressa™): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett.11, 1911–1914 (2001). ArticleCASPubMed Google Scholar
Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics: a summary and pharmacological classification. Nature Rev. Drug Discov.7, 21–39 (2008). ArticleCAS Google Scholar
Wilhelm, S. et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. NatureRev. Drug Discov5, 835–844 (2006). ArticleCAS Google Scholar
Goke, R. et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting β-cells. J. Biol. Chem.268, 19650–19655 (1993). CASPubMed Google Scholar
Alvaro, G. & Di Fabio, R. Neurokinin 1 receptor antagonists — current prospects.Curr. Opin. Drug Discov.Dev.10, 613–621 (2007). CAS Google Scholar
Wijayaratne, A. L. & McDonnell, D. P. The human estrogen receptor-α is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J. Biol. Chem.276, 35684–35692 (2001). ArticleCASPubMed Google Scholar
Ferrara, N. et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov.3, 391–400 (2004). ArticleCAS Google Scholar
Capdeville, R., Buchdunger, E., Zimmermann, J. Matter A. Glivec (ST571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug. Discov.1, 493–502 (2002). ArticleCAS Google Scholar
Wacker, D. et al. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc.132, 11443–11445 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sigoillot, F. D. & King, R. W. Vigilance and validation: keys to success in RNAi screening. ACS Chem. Biol.6, 47–60 (2011). ArticleCASPubMed Google Scholar
Hergenrother, P. J. & Palchaudhuri, R. Transcript profiling and RNA interference as tools to identify small molecule mechanisms and therapeutic potential. ACS Chem. Biol.6, 21–33 (2011). ArticleCASPubMed Google Scholar
Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nature Rev. Drug. Discov.10, 188–195 (2011). ArticleCAS Google Scholar
Pruss, R. M. Phenotypic screening strategies for neurodegenerative diseases: a pathway to discover novel drug candidates and potential disease targets or mechanisms. CNS Neurol. Disord. Drug Targets9, 693–700 (2010). ArticleCASPubMed Google Scholar
Bickle, M. The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem.398, 219–226 (2010). ArticleCASPubMed Google Scholar
Mayer, A. M. et al. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol. Sci.31, 255–265 (2010). ArticleCASPubMed Google Scholar
Telling, J. L. et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J. Immunol.177, 362–371 (2006). Article Google Scholar
Anthes, J. C. et al. Biochemical characterization of desloratadine, a potent antagonist of the human histamine H1 receptor. Eur. J. Pharmacol.449, 229–237 (2002). ArticleCASPubMed Google Scholar
Disse, B. et al. Tiotropium (Spiriva): mechanistic considerations and clinical profile in obstructive lung disease. Life Sci.64, 457–464 (1999). ArticleCASPubMed Google Scholar
Vauquelin, G., Fierens, F. & Van Liefde, I. Long-lasting AT1 receptor binding and protection by candesartan: comparison to other biphenyl-tetrazole sartans. J.Hypertens.24, S23–S30 (2006). ArticleCAS Google Scholar
Fuchs, B. et al. Comparative pharmacodynamics and pharmacokinetics of candesartan and losartan in man. J. Pharm. Pharmacol.52, 1075–1083 (2000). ArticleCASPubMed Google Scholar
Gustafsson, J. A. Raloxifene: magic bullet for heart and bone? Nature Med.4, 152–153 (1998). ArticleCASPubMed Google Scholar
DiMasi, J. A. & Fadon, L. B. Competitiveness in follow-on drug R&D: a race or imitation? Nature Rev. Drug Discov.10, 1–5 (2011). ArticleCAS Google Scholar
Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physiocochemical parameters. Nature Rev. Drug Discov.10, 197–208 (2011). ArticleCAS Google Scholar
Fersht, A. Enzyme Structure and Mechanism 88–109 (W. H Freeman and Company, New York,1985). Google Scholar
Issa, J. P. J., Kantarjian, H. M. & Kirkpatrick, P. Azacitidine. Nature Rev. Drug Discov.4, 275–276 (2005). ArticleCAS Google Scholar
Martel, R. R., Klicius, J. & Galet, S. Inhibition of immune response by rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol.55, 48–51 (1977). ArticleCASPubMed Google Scholar
Bartizal, K. et al. In vitro antifungal activities and in vivo efficacies of 1,3-β-glucan synthesis inhibitors L671,329, L646,991, tetrahydroechinocandin B, and L687,781, a papulacandin. Antimicrob. Agents Chemother.36, 1648–1657 (1992). ArticleCASPubMedPubMed Central Google Scholar
Uchikawa, O. et al. Synthesis of a novel series of tricyclic indan derivatives as melatonin receptor agonists. J. Med. Chem.45, 4222–4239 (2002). ArticleCASPubMed Google Scholar
Kenakin, T. Pharmacologic Analysis of Drug-Receptor Interaction 242–395 (Lippincott-Raven Publishers, Philadelphia, 1997). Google Scholar
Burris K. D. et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J. Pharmacol. Exp. Ther.302, 381–389 (2002). ArticleCASPubMed Google Scholar
Pulvirenti, L. & Koob, G. F. Dopamine receptor agonists, partial agonists and psychostimulant addiction. Trends Pharmacol. Sci.15, 374–379 (1994). ArticleCASPubMed Google Scholar
Coe, J. E. et al. Varenicline: an α4β2 nicotinic receptor partial agonist for smoking cessation. J. Med. Chem.48, 3474–3477 (2005). Describes the thinking that led to a mechanism-based search for a partial agonist of nicotinic receptors. ArticleCASPubMed Google Scholar
Rickter, A. M. et al. Preliminary studies on a more effective phototoxic agent than hematoporphyrin. J. Natl Cancer Inst.79, 1327–1332 (1987). Google Scholar
Hemphill, A., Mueller, J. & Esposito, M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin. Pharmacother.7, 953–964 (2006). ArticleCASPubMed Google Scholar
Rossignol, J. F. & Maisonneuve, H. Nitazoxanide in the treatment of Teania saginata and Hymenolepis nana infections. Am. J. Trop. Med. Hyg.33, 511–512 (1984). ArticleCASPubMed Google Scholar
Lewis, D. A. & Lieberman, J. A. Catching up on schizophrenia: natural history and neurobiology. Neuron28, 325–334 (2000). ArticleCASPubMed Google Scholar
Yasuda, Y. et al. 7-[3-[4-(2,3 dimethylphenyl)piperazinyl] propoxy]-2(1_H_)-quinolinone (OPC-4392), a presynaptic dopamine receptor agonist and postsynaptic D2 receptor antagonist. Life Sci.42, 1941–1954 (1988). ArticleCASPubMed Google Scholar
Kikuchi, T. et al. 7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1_H_)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J. Pharmacol. Exp. Ther.274, 329–336 (1995). CASPubMed Google Scholar
Oshiro, Y. et al. Novel antipsychotic agents with dopamine autoreceptor agonist properties: synthesis and pharmacology of 7-[4-(4-phenyl-1-piperazinyl)butoxy]-3,4-dihydro-2(1_H_)-quinolinone derivatives. J. Med. Chem.41, 658–667 (1998). ArticleCASPubMed Google Scholar
Inoue, T., Domae, M., Yamada, K. & Furukawa, T. Effects of the novel antipsychotic agent 7-(4-[4-(2,3-dichorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1_H_)-quinoline (OPC-14597) on prolactin release from the rat anterior pituitary gland. J. Pharmacol. Exp. Ther.277, 137–143 (1996). CASPubMed Google Scholar
Egger, G., Liang, G., Aparicio, A. & Jones, P. A. Epigenetics in human disease and prospects for epigenetic therapy. Nature429, 457–463 (2004). ArticleCASPubMed Google Scholar
Satistowska-Schroder, E. T., Kerridge, D. & Perry, H. Echinocandin inhibition of 1,3-β-D-glucan synthase from Candida albicans. FEBS Lett.173, 134–138 (1984). Article Google Scholar
Nishi, T. et al. Studies on 2-oxoquinoline derivatives as blood platelet aggregation inhibitors. I. Alkyl 4-(2-oxo-1,2,3,4-tetrahydro-6-quinolyloxy)butyrates and related compounds. Chem. Pharm. Bull.31, 798–810 (1983). ArticleCAS Google Scholar
Tally, F. P. DeBruin M. F. Development of daptomycin for Gram-positive infections. J. Antimicrob. Chemother.46, 523–526 (2000). ArticleCASPubMed Google Scholar
Snipes, W., Person, S., Keller, G., Taylor, W. & Keith, A. Inactivation of lipid-containing viruses by long-chain alcohols. Antimicrob. Agents Chemother.11, 98–104 (1977). ArticleCASPubMedPubMed Central Google Scholar
Sands, J., Auperin, D. & Snipes, W. Extreme sensitivity of enveloped viruses including herpes-simplex, to long-chain unsaturated monglycerides and alcohols. Antimicrob. Agents Chemother.15, 67–73 (1979). ArticleCASPubMedPubMed Central Google Scholar
Katz, D. H., Marcelletti, J. F., Khalil, M. H., Pope, L. E. & Katz, L. E. Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses including herpes simplex. Proc. Natl Acad. Sci. USA88, 10825–10829 (1991). ArticleCASPubMedPubMed Central Google Scholar
Wakeling, A. E., Dukes, M. & Bowler, J. A potent specific pure antiestrogen with clinical potential. Cancer Res.51, 3867–3873 (1991). CASPubMed Google Scholar
Stenoien, D. L. et al. FRAP reveals that mobility of oestrogen receptor-α is ligand- and proteasome-dependent. Nature Cell Biol.3, 15–23 (2001). ArticleCASPubMed Google Scholar
Glower, A. J., Noyer, M., Verloes, R., Gobert, J. & Wulfert, E. UCB L059, a novel anti-convulsant drug: pharmacological profile in animals. Eur. J. Pharmacol.222, 193–203 (1992). Article Google Scholar
Shinabarger, D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin. Investig. Drugs8, 1195–1202 (1999). ArticleCASPubMed Google Scholar
Brickner, S. J. Oxazolidinone antibacterial agents. Curr. Pharm. Des.2, 175–194 (1996). CAS Google Scholar
Cuppoletti J. et al. Recombinant and native intestinal cell ClC-2 Cl− channels are activated by RU-0211. Gastroenterology122, A538 (2002). Google Scholar
Cuppoletti, J. et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am. J. Physiol.287, C1173–C1183 (2004). ArticleCAS Google Scholar
Peña-Münzenmayer, G. et al. Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J. Cell Sci.118, 4243–4252 (2005). ArticleCASPubMed Google Scholar
Parsons, C. G., Danysz, W. & Quack, G. Memantine is a clinically well-tolerated _N_-methyl-D-aspartate (NMDA) receptor antagonist — a review of the preclinical data. Neuropharmacology38, 735–767 (1999). ArticleCASPubMed Google Scholar
Gerzon, K. et al. The adamantyl group in medicinal agents. I. Hypoglycemic _N_-arylsulfonyl-_N_′-adamantylureas. J. Med. Chem.6, 760–763 (1963). ArticleCASPubMed Google Scholar
Bormann, J. Memantine is a potent blocker of _N_-methyl-D-aspartate (NMDA) receptor channels. Eur. J. Pharmacol.166, 591–592 (1989). ArticleCASPubMed Google Scholar
Platt, F. M., Neises, G. R., Dwek, R. A. & Butters, T. D. _N_-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem.269, 8362–8365 (1994). CASPubMed Google Scholar
Pastores, G. M. & Barnett, N. L. Substrate reduction therapy: miglustat as a remedy for symptomatic patients with Gaucher disease type 1. Expert Opin. Investig. Drugs.12, 273–281 (2003). ArticleCASPubMed Google Scholar
Hu, S. et al. Pancreatic β-cell KATP channel activity and membrane-binding studies with nateglinide: a comarison with sulfonylureas and repaglinide. J. Pharmacol. Ther.293, 444–452 (2000). CAS Google Scholar
Shinkai, H. et al. _N_-acylphenylanalines and related compounds. A new class of oral hypoglycemic agents. J. Med. Chem.31, 2092–2097 (1988). ArticleCASPubMed Google Scholar
Shinkai, H. et al. _N_-acylphenylanalines and related compounds. A new class of oral hypoglycemic agents. J. Med. Chem.32, 1436–1441 (1989). ArticleCASPubMed Google Scholar
Parker, W. B. et al. Purine nucleoside analogues in development for the treatment of cancer. Curr. Opin. Investig. Drugs5, 592–596 (2004). CASPubMed Google Scholar
Rodriguez, C. O. et al. Mechanisms for T-cell selective cytotoxicity of arabinosylguanine. Blood102, 1842–1848 (2003). ArticleCASPubMed Google Scholar
Krenitsky, T. A. et al. An enzymatic synthesis of purine-D-arabinonucleosides. Carbohydr. Res.97, 139–146 (1981). ArticleCAS Google Scholar
Lambe, C. U. et al. 2-amino-6-methoxypurine arabinoside: an agent for T-cell malignancies. Cancer Res.55, 3352–3356 (1995). CASPubMed Google Scholar
Gandhi, V., Keating, M. J., Bate, G. & Kirkpatrick, P. Nelarabine. Nature Rev. Drug Discov.5, 17–18 (2006). ArticleCAS Google Scholar
Lock, E. A. et al. From toxicological problem to therapeutic use: the discovery of the mode of action of 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3-cyclohexanedione (NTBC), its toxicology and development as a drug. J. Inherit. Metab. Dis.21, 498–506 (1998). ArticleCASPubMed Google Scholar
Kavana, M. & Moran, G. R. Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-Nitro-4-(trifluoromethyl)benzoly]-1,3-cyclohexanedione. Biochemistry42, 10238–10245 (2003). ArticleCASPubMed Google Scholar
Brownlee, J. M., Johnson-Winters, K., Harrison, D. H. T. & Moran, G. R. Structure of the ferrous form of 4-(hydroxyphenyl)pyruvate dehydrogenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC. Biochemistry43, 6370–6377 (2004). ArticleCASPubMed Google Scholar
Yanagihara, Y., Kasai, H., Kawashima, T. & Shida, T. Immunopharmacological studies on TBX, a new antiallergic drug (1). Inhibitory effects on passive cutaneous anaphylaxis in rats and guinea pigs. Jpn. J. Pharmacol.48, 91–101 (1988). ArticleCASPubMed Google Scholar
Gaffney, S. M. Ranolazine, a novel agent for chronic stable angina. Pharmacotherapy26, 135–142 (2006). ArticleCASPubMed Google Scholar
Chaitman, B. R. et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J. Am. Coll. Cardiol.43, 1375–1382 (2004). ArticleCASPubMed Google Scholar
Chaitman, B. R. et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA291, 309–316 (2004). ArticleCASPubMed Google Scholar
Antzelevitch, C. et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation110, 904–910 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jain, K. K. An assessment of rufinamide as an anti-epileptic in comparison with other drugs in clinical development. Expert Opin. Investig. Drugs9, 829–840 (2000). ArticleCASPubMed Google Scholar
Meltzer, S. M., Monk, B. J. & Tewari, K. S. Green tea catechins for treatment of external genital warts. Am. J. Obstet. Gynecol.200, 233.e1–233.e7 (2009). ArticleCAS Google Scholar
Vezina, C., Kudelski, A. & Shegal, S. N. Rapamycin. (AY-22,989), a new antifungal antibiotic. I. Taxomony of the producing streptomycete and isolation of the active principle. J. Antibiot.10, 721–726 (1975). Article Google Scholar
Richon, V. M. et al. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc. Natl Acad. Sci. USA93, 5705–5708 (1996). ArticleCASPubMedPubMed Central Google Scholar
Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotech.25, 84–90 (2007). ArticleCAS Google Scholar
Masuda Y. et al. 3-Sulfamoylmethyl-1,2-benzisoxazole, a new type of anticonvulsant drug: pharmacological profile. Arzneimittelforschung30, 477–483 (1980). CASPubMed Google Scholar
Maibaum, J. et al. Structural modification of the P2' position of 2,7-dialkyl-substituted 5(S)-amino-4(S)-hydroxy-8-phenyl-octanecarboxamides: the discovery of aliskiren, a potent non-peptide human renin inhibitor active after once daily dosing in marmosets. J. Med. Chem.50, 4832–4844 (2007). ArticleCASPubMed Google Scholar
Goldberg, A. in Cancer Drug Discovery and Development: Proteasome Inhibitors in Cancer Therapy (ed. Adams, J.) 17–38 (Humana, Totowa, 2004). Book Google Scholar
Stein, R. L., Ma, Y. T. & Brand, S. Inhibitors of the 26s proteolytic complex and the 20s proteasome contained therein. US Patent 5,693,617 (1995).
Decaux, G., Soupart, A. & Vassart, G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet371, 1624–1632 (2008). ArticleCASPubMed Google Scholar
Flexner, C. HIV drug development: the next 25 years. Nature Rev. Drug Discov.6, 959–966 (2007). ArticleCAS Google Scholar
Tsibris, A. M. & Kuritzkes, D. R. Chemokine antagonists as therapeutics: focus on HIV-1. Annu. Rev. Med.58, 445–459 (2007). ArticleCASPubMed Google Scholar
Dorr, P. et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob. Agents Chemother.49, 4721–4732 (2005). ArticleCASPubMedPubMed Central Google Scholar
Watson, C., Jenkinson, S., Kazmierski, W. & Kenakin, T. The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol. Pharmacol.67, 1268–1282 (2005). ArticleCASPubMed Google Scholar
Pincus, G. (ed.) The Control of Fertility. 128–138 (Academic Press, New York, 1965). Google Scholar
Belanger, A., Philibert, D. & Teutsch, G. Regio and stereospecific synthesis of 11β-substituted 19-norsteroids. Steroids37, 361–382 (1981). ArticleCASPubMed Google Scholar
Mahajan, D. K. & London, S. N. Mifepristone (RU486): a review. Fertil. Steril.68, 967–976 (1997). ArticleCASPubMed Google Scholar
Raaijmakers, H. C., Versteegh, J. E. & Uitdehaag, J. C. The X-ray structure of RU486 bound to the progesterone receptor in a destabilized agonistic conformation. J. Biol. Chem.284, 19572–19579 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hadvary, P., Lengsfeld, H. & Wolfer, H. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem. J.256, 357–361 (1988). ArticleCASPubMedPubMed Central Google Scholar
Hazuda, D. J. et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science287, 646–650 (2000). ArticleCASPubMed Google Scholar
Summa, V. et al. Discovery of raltegravir. A potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem.51, 5843–5855 (2008). ArticleCASPubMed Google Scholar
Buysse, D., Bate, G. & Kirkpatrick, P. Ramelteon. Nature Rev. Drug Discov.4, 881–882 (2005). ArticleCAS Google Scholar
Atkins, M. B. et al. Innovations and challenges in renal cancer: consensus statement from the first international conference. Clin. Cancer Res.9, 6277S–6281S (2004). Article Google Scholar
Bergers, G. et al. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest.111, 1287–1295 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mendel, D. B. et al. In vivo anti-tumor activity of SU11248, a novel tyrosine kinase inhibitor targeting VEGF and PDGF receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res.9, 327–337 (2003). CASPubMed Google Scholar
De Clercq, E. Strategies in the design of antiviral drugs. Nature Rev. Drug Discov.1, 13–25 (2002). ArticleCAS Google Scholar
Boismare, F. et al. A homotaurine derivative reduces the voluntary intake of ethanol by rats: are cerebral GABA receptors involved? Pharmacol. Biochem. Behav.21, 787–789 (1984). ArticleCASPubMed Google Scholar
Kennedy, J. C., Pottier, R. H. & Pross, D. C. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J. Photochem. Photobiol. B6, 143–148 (1990). ArticleCASPubMed Google Scholar
Sima, A. A. F., Kennedy, J. C., Blakeslee, D. & Robertson, D. M. Experimental porphyric neuropathy: a preliminary report. Can. J. Neurol. Sci.8 105–114 (1981). ArticleCASPubMed Google Scholar
Choay, J. et al. Structure–activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem. Biophys. Res. Commun.116, 492–499 (1983). ArticleCASPubMed Google Scholar
Hirsh, J. et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest119, 64S–94S (2001). ArticleCASPubMed Google Scholar
Walenga, J. M. et al. Development of a synthetic heparin pentasaccharide: fondaparinux. Turk. J. Haematol.19, 137–150 (2002). CASPubMed Google Scholar
Blau, N. & Erlandsen, H. The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol. Genet. Metab.82, 101–111 (2004). ArticleCASPubMed Google Scholar
Niederwieser, A. & Curtius, H. C. in Inherited Diseases of Amino Acid Metabolism (eds Bickel, H. & Wachtel, U.) 104–121 (Georg Thieme, Stuttgart, 1985). Google Scholar
Kure, S. et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. J. Pediatr.135, 375–378 (1999). ArticleCASPubMed Google Scholar
Muntau, A. C. et al. Tetrahydrobiopterin as an alternative treatment for mild phenylketonuria. N. Engl. J. Med.347, 2122–2132 (2002). ArticleCASPubMed Google Scholar
Mellish, K. J. & Brown, S. B. Verteporfin: a milestone in ophthalmology and photodynamic therapy. Expert Opin. Pharmacother.2, 351–361 (2001). ArticleCASPubMed Google Scholar