Modulation of oxidative stress as an anticancer strategy (original) (raw)
Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nature Rev. Cancer11, 85–95 (2011). ArticleCAS Google Scholar
Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature458, 780–783 (2009). This paper demonstrates that the mechanism by which cancer stem cells survive radiation (while the remaining tumour is eradicated) is through increased antioxidants and lower ROS levels. ArticleCASPubMedPubMed Central Google Scholar
Schrader, M. & Fahimi, H. D. Peroxisomes and oxidative stress. Biochim. Biophys. Acta1763, 1755–1766 (2006). ArticleCASPubMed Google Scholar
Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal.9, 2277–2293 (2007). ArticleCASPubMed Google Scholar
Janssen-Heininger, Y. M. et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic. Biol. Med.45, 1–17 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rhee, S. G. H2O2, a necessary evil for cell signaling. Science312, 1882–1883 (2006). ArticlePubMed Google Scholar
Naik, E. & Dixit, V. M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med.208, 417–420 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gloire, G., Legrand-Poels, S. & Piette, J. NF-κB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol.72, 1493–1505 (2006). ArticleCASPubMed Google Scholar
Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature Rev. Drug Discov.8, 579–591 (2009). ArticleCAS Google Scholar
Ranjan, P. et al. Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid. Redox Signal.8, 1447–1459 (2006). ArticleCASPubMed Google Scholar
Martindale, J. L. & Holbrook, N. J. Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol.192, 1–15 (2002). ArticleCASPubMed Google Scholar
Xu, D., Rovira, I. I. & Finkel, T. Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev. Cell2, 251–252 (2002). ArticleCASPubMed Google Scholar
Harris, I. S. et al. PTPN12 promotes resistance to oxidative stress and supports tumorigenesis by regulating FOXO signaling. Oncogenehttp://dx.doi.org/10.1038/onc.2013.24 (2013).
Kim, H. M. et al. Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon. Ann. Surg. Oncol.19 (Suppl. 3), 539–548 (2012). Article Google Scholar
Schafer, Z. T. et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature461, 109–113 (2009). This study reported that, upon matrix detachment, cancer cells undergo an increase in ROS levels, which can be alleviated by oncogene expression. ArticleCASPubMedPubMed Central Google Scholar
Sporn, M. B. & Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nature Rev. Cancer12, 564–571 (2012). ArticleCAS Google Scholar
Taguchi, K., Motohashi, H. & Yamamoto, M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells16, 123–140 (2011). ArticleCASPubMed Google Scholar
Sasaki, H. et al. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J. Biol. Chem.277, 44765–44771 (2002). ArticleCASPubMed Google Scholar
Mandal, P. K. et al. System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J. Biol. Chem.285, 22244–22253 (2010). ArticleCASPubMedPubMed Central Google Scholar
Johansson, L., Gafvelin, G. & Arner, E. S. Selenocysteine in proteins — properties and biotechnological use. Biochim. Biophys. Acta1726, 1–13 (2005). ArticleCASPubMed Google Scholar
Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nature Cell Biol.14, 276–286 (2012). This paper identifies the functional role of CD44 in increasing cystine uptake and lowering ROS levels. ArticleCASPubMed Google Scholar
Ishimoto, T. et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc− and thereby promotes tumor growth. Cancer Cell19, 387–400 (2011). ArticleCASPubMed Google Scholar
McGrath-Morrow, S. et al. Nrf2 increases survival and attenuates alveolar growth inhibition in neonatal mice exposed to hyperoxia. Am. J. Physiol. Lung Cell. Mol. Physiol.296, L565–L573 (2009). ArticleCASPubMedPubMed Central Google Scholar
Thimmulappa, R. K. et al. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res.62, 5196–5203 (2002). CASPubMed Google Scholar
Gross, S. et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J. Exp. Med.207, 339–344 (2010). ArticleCASPubMedPubMed Central Google Scholar
Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell18, 553–567 (2010). CASPubMedPubMed Central Google Scholar
Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell22, 66–79 (2012). ArticleCASPubMed Google Scholar
Arner, E. S. & Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem.267, 6102–6109 (2000). ArticleCASPubMed Google Scholar
Chorley, B. N. et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res.40, 7416–7429 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. J. et al. Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology. Cancer Res.67, 546–554 (2007). ArticleCASPubMed Google Scholar
Gutteridge, J. M. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett.201, 291–295 (1986). ArticleCASPubMed Google Scholar
Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol.50, 323–354 (2010). ArticleCASPubMed Google Scholar
Alam, J. et al. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem.274, 26071–26078 (1999). ArticleCASPubMed Google Scholar
Weinberg, E. D. The role of iron in cancer. Eur. J. Cancer Prev.5, 19–36 (1996). CASPubMed Google Scholar
Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature398, 630–634 (1999). ArticleCASPubMed Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999). ArticleCASPubMed Google Scholar
Brunet, A. et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol. Cell. Biol.21, 952–965 (2001). ArticleCASPubMedPubMed Central Google Scholar
Greer, E. L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene24, 7410–7425 (2005). ArticleCASPubMed Google Scholar
Essers, M. A. et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J.23, 4802–4812 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lehtinen, M. K. et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell125, 987–1001 (2006). ArticleCASPubMed Google Scholar
Nemoto, S. & Finkel, T. Redox regulation of forkhead proteins through a _p66shc_-dependent signaling pathway. Science295, 2450–2452 (2002). ArticleCASPubMed Google Scholar
Yalcin, S. et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J. Biol. Chem.283, 25692–25705 (2008). ArticleCASPubMed Google Scholar
Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem.282, 30107–30119 (2007). ArticleCASPubMed Google Scholar
Cheng, Z. et al. Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nature Med.15, 1307–1311 (2009). ArticleCASPubMed Google Scholar
Mei, Y. et al. FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation. Proc. Natl Acad. Sci. USA106, 5153–5158 (2009). ArticlePubMedPubMed Central Google Scholar
Martin, S. A., Hewish, M., Sims, D., Lord, C. J. & Ashworth, A. Parallel high throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair deficient cancers. Cancer Res.71, 1836–1848 (2011). ArticleCASPubMed Google Scholar
Nogueira, V. et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell14, 458–470 (2008). This paper reports the discovery that hyperactivation of the PI3K–AKT pathway can sensitize cancer cells to oxidative stress owing to the inactivation of FOXO factors and the resulting decrease in the expression of antioxidant enzymes. ArticleCASPubMedPubMed Central Google Scholar
Kops, G. J. et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature419, 316–321 (2002). ArticleCASPubMed Google Scholar
Woo, H. A., Bae, S. H., Park, S. & Rhee, S. G. Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid. Redox Signal.11, 739–745 (2009). ArticleCASPubMed Google Scholar
Vousden, K. H. & Ryan, K. M. p53 and metabolism. Nature Rev. Cancer9, 691–700 (2009). ArticleCAS Google Scholar
Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell126, 107–120 (2006). This paper identifies the role of the novel p53 geneTIGAR, which supports NADPH production by diverting metabolites into the PPP. ArticleCASPubMed Google Scholar
Suzuki, S. et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl Acad. Sci. USA107, 7461–7466 (2010). ArticlePubMedPubMed Central Google Scholar
Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature458, 762–765 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chen, W. et al. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell34, 663–673 (2009). ArticleCASPubMedPubMed Central Google Scholar
Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell117, 211–223 (2004). ArticleCASPubMed Google Scholar
Meiller, A. et al. p53-dependent stimulation of redox-related genes in the lymphoid organs of γ-irradiated mice — identification of haeme-oxygenase 1 as a direct p53 target gene. Nucleic Acids Res.35, 6924–6934 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hayes, J. D., McMahon, M., Chowdhry, S. & Dinkova-Kostova, A. T. Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway. Antioxid. Redox Signal.13, 1713–1748 (2010). ArticleCASPubMed Google Scholar
Hu, R., Saw, C. L., Yu, R. & Kong, A. N. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid. Redox Signal.13, 1679–1698 (2010). ArticleCASPubMedPubMed Central Google Scholar
Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature477, 225–228 (2011). ArticleCASPubMed Google Scholar
DeNicola, G. M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature475, 106–109 (2011). This study shows that the physiological expression of oncogenes can lead to decreased ROS levels through NRF2 antioxidant transcription. ArticleCASPubMedPubMed Central Google Scholar
Clements, C. M., McNally, R. S., Conti, B. J., Mak, T. W. & Ting, J. P. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl Acad. Sci. USA103, 15091–15096 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kim, R. H. et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell7, 263–273 (2005). ArticleCASPubMed Google Scholar
Vasseur, S. et al. DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc. Natl Acad. Sci. USA106, 1111–1116 (2009). ArticlePubMedPubMed Central Google Scholar
Vasseur, S. et al. Consequences of DJ-1 upregulation following p53 loss and cell transformation. Oncogene31, 664–670 (2012). ArticleCASPubMed Google Scholar
Zaugg, K. et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev.25, 1041–1051 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sanchez-Macedo, N. et al. Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model. Cell Death Differ.20, 659–668 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. R. et al. Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J. Pathol.220, 446–451 (2010). ArticleCASPubMed Google Scholar
Shibata, T. et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl Acad. Sci. USA105, 13568–13573 (2008). ArticlePubMedPubMed Central Google Scholar
Hayes, J. D. & McMahon, M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem. Sci.34, 176–188 (2009). ArticleCASPubMed Google Scholar
Tenbaum, S. P. et al. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nature Med.18, 892–901 (2012). ArticleCASPubMed Google Scholar
Naka, K. et al. TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature463, 676–680 (2010). ArticleCASPubMed Google Scholar
Sykes, S. M. et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell146, 697–708 (2011). ArticleCASPubMed Google Scholar
Burgering, B. M. & Medema, R. H. Decisions on life and death: FOXO forkhead transcription factors are in command when PKB/Akt is off duty. J. Leukoc. Biol.73, 689–701 (2003). ArticleCASPubMed Google Scholar
Olanich, M. E. & Barr, F. G. A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma. Expert Opin. Ther. Targets17, 607–623 (2013). ArticleCASPubMedPubMed Central Google Scholar
del Peso, L., Gonzalez, V. M., Hernandez, R., Barr, F. G. & Nunez, G. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene18, 7328–7333 (1999). ArticleCASPubMed Google Scholar
Li, B., Gordon, G. M., Du, C. H., Xu, J. & Du, W. Specific killing of Rb mutant cancer cells by inactivating TSC2. Cancer Cell17, 469–480 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature485, 661–665 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bae, I. et al. BRCA1 induces antioxidant gene expression and resistance to oxidative stress. Cancer Res.64, 7893–7909 (2004). ArticleCASPubMed Google Scholar
Barzilai, A., Rotman, G. & Shiloh, Y. ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair1, 3–25 (2002). ArticleCASPubMed Google Scholar
Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature431, 997–1002 (2004). ArticleCASPubMed Google Scholar
Guo, Z., Kozlov, S., Lavin, M. F., Person, M. D. & Paull, T. T. ATM activation by oxidative stress. Science.330, 517–521 (2010). ArticleCASPubMed Google Scholar
Alexander, A. et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl Acad. Sci. USA107, 4153–4158 (2010). ArticlePubMedPubMed Central Google Scholar
Adam, J. et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell20, 524–537 (2011). This paper demonstrates that NRF2 is stabilized upon loss of the tumour suppressor gene fumarate hydratase. ArticleCASPubMedPubMed Central Google Scholar
Ooi, A. et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell20, 511–523 (2011). ArticleCASPubMed Google Scholar
Sullivan, L. B. et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell51, 236–248 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mazurek, S., Boschek, C. B., Hugo, F. & Eigenbrodt, E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin. Cancer Biol.15, 300–308 (2005). ArticleCASPubMed Google Scholar
Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature452, 230–233 (2008). ArticleCASPubMed Google Scholar
Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. & Cantley, L. C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature452, 181–186 (2008). ArticleCASPubMed Google Scholar
Vander Heiden, M. G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science329, 1492–1499 (2010). ArticleCASPubMed Google Scholar
Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to antioxidant responses. Science334, 1278–1283 (2011). ArticleCASPubMedPubMed Central Google Scholar
Locasale, J. W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genet.43, 869–874 (2011). ArticleCASPubMed Google Scholar
Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature476, 346–350 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science336, 1040–1044 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zoller, M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nature Rev. Cancer11, 254–267 (2011). ArticleCAS Google Scholar
Blot, W. J. et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J. Natl Cancer Inst.85, 1483–1492 (1993). ArticleCASPubMed Google Scholar
Qiao, Y. L. et al. Total and cancer mortality after supplementation with vitamins and minerals: follow-up of the Linxian General Population Nutrition Intervention Trial. J. Natl Cancer Inst.101, 507–518 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhang, W. et al. Vitamin intake and liver cancer risk: a report from two cohort studies in China. J. Natl Cancer Inst.104, 1173–1181 (2012). ArticleCASPubMed Google Scholar
Hurst, R. et al. Selenium and prostate cancer: systematic review and meta-analysis. Am. J. Clin. Nutr.96, 111–122 (2012). ArticleCASPubMed Google Scholar
Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA306, 1549–1556 (2011). This was the first large study on the link between vitamin E supplementation and cancer risk, in contrast to early observations suggesting that vitamin E has a protective effect against cancer. ArticleCASPubMedPubMed Central Google Scholar
Su, Z. Y. et al. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, Nrf2, and epigenomics. Top. Curr. Chem.329, 133–162 (2012). ArticleCAS Google Scholar
Kim, Y. S., Farrar, W., Colburn, N. H. & Milner, J. A. Cancer stem cells: potential target for bioactive food components. J. Nutrit. Biochem.23, 691–698 (2012). ArticleCAS Google Scholar
Conklin, K. A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr. Cancer Ther.3, 294–300 (2004). ArticleCASPubMed Google Scholar
Barrera, G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol.2012, 137289 (2012). PubMedPubMed Central Google Scholar
Santiago-Arteche, R. et al. Cancer chemotherapy reduces plasma total polyphenols and total antioxidants capacity in colorectal cancer patients. Mol. Biol. Rep.39, 9355–9360 (2012). ArticleCASPubMed Google Scholar
Kaufmann, S. H. & Earnshaw, W. C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res.256, 42–49 (2000). ArticleCASPubMed Google Scholar
Miller, W. H. et al. Mechanisms of action of arsenic trioxide. Cancer Res.62, 3893–3903 (2002). CASPubMed Google Scholar
Yi, J. et al. The inherent cellular level of reactive oxygen species: one of the mechanisms determining apoptotic susceptibility of leukemic cells to arsenic trioxide. Apoptosis7, 209–215 (2002). ArticleCASPubMed Google Scholar
Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Rev. Cancer3, 330–338 (2003). ArticleCAS Google Scholar
Hwang, P. M. et al. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nature Med.7, 1111–1117 (2001). ArticleCASPubMed Google Scholar
Hwang, I. T. et al. Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem. Biophys. Res. Commun.359, 304–310 (2007). ArticleCASPubMed Google Scholar
Zhang, Q. et al. Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Cancer Lett.313, 201–210 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kachadourian, R. et al. 2-methoxyestradiol does not inhibit superoxide dismutase. Arch. Biochem. Biophys.392, 349–353 (2001). ArticleCASPubMed Google Scholar
Lai, W. L. & Wong, N. S. ROS mediates 4HPR-induced posttranscriptional expression of the Gadd153 gene. Free Radic. Biol. Med.38, 1585–1593 (2005). ArticleCASPubMed Google Scholar
Apraiz, A. et al. Dihydroceramide accumulation and reactive oxygen species are distinct and nonessential events in 4-HPR-mediated leukemia cell death. Biochem. Cell Biol.90, 209–223 (2012). ArticleCASPubMedPubMed Central Google Scholar
Neckers, L. & Workman, P. Hsp90 molecular chaperone inhibitors: are we there yet? Clin. Cancer Res.18, 64–76 (2012). CASPubMedPubMed Central Google Scholar
Hao, H. et al. HSP90 and its inhibitors. Oncol. Rep.23, 1483–1492 (2010). CASPubMed Google Scholar
Scarbrough, P. M. et al. Simultaneous inhibition of glutathione- and thioredoxin-dependent metabolism is necessary to potentiate 17AAG-induced cancer cell killing via oxidative stress. Free Radic. Biol. Med.52, 436–443 (2012). ArticleCASPubMed Google Scholar
De Raedt, T. et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for Ras-driven tumors. Cancer Cell20, 400–413 (2011). ArticleCASPubMedPubMed Central Google Scholar
Metzger-Filho, O. et al. Dissecting the heterogeneity of triple-negative breast cancer. J. Clin. Oncol.30, 1879–1887 (2012). ArticleCASPubMed Google Scholar
Masaoka, A., Horton, J. K., Beard, W. A. & Wilson, S. H. DNA polymerase beta and PARP activities in base excision repair in living cells. DNA Repair8, 1290–1299 (2009). ArticleCASPubMedPubMed Central Google Scholar
Berndtsson, M. et al. Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA. Int. J. Cancer120, 175–180 (2007). ArticleCASPubMed Google Scholar
Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA105, 17079–17084 (2008). The discovery of PARP inhibitors have brought hope in the treatment of BRCA1-mutated cancers. This work shows the efficacy of PARP inhibitors in combination with platinum drugs. ArticlePubMedPubMed Central Google Scholar
Evers, B. et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res.14, 3916–3925 (2008). ArticleCASPubMed Google Scholar
Michels, J. et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res.73, 2271–2280 (2013). ArticleCASPubMed Google Scholar
Michels, J. et al. Synergistic interaction between cisplatin and PARP inhibitors in non-small cell lung cancer. Cell Cycle12, 877–883 (2013). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, T., Goto, S., Kawakatsu, M., Urata, Y. & Li, T. S. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic. Res.46, 147–153 (2012). ArticleCASPubMed Google Scholar
Wang, Y. et al. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med.48, 348–356 (2010). ArticleCASPubMed Google Scholar
Voorhees, P. M., Dees, E. C., O'Neil, B. & Orlowski, R. Z. The proteasome as a target for cancer therapy. Clin. Cancer Res.9, 6316–6325 (2003). CASPubMed Google Scholar
Joazeiro, C. A., Anderson, K. C. & Hunter, T. Proteasome inhibitor drugs on the rise. Cancer Res.66, 7840–7842 (2006). ArticleCASPubMed Google Scholar
Papa, L., Gomes, E. & Rockwell, P. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis12, 1389–1405 (2007). ArticleCASPubMed Google Scholar
Chen, Z. et al. Nuclear translocation of B-cell-specific transcription factor, BACH2, modulates ROS mediated cytotoxic responses in mantle cell lymphoma. PLoS ONE8, e69126 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kane, R. C. et al. Bortezomib for the treatment of mantle cell lymphoma. Clin. Cancer Res.13, 5291–5294 (2007). ArticleCASPubMed Google Scholar
Denmeade, S. R. et al. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci. Transl. Med.4, 140ra86 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kardosh, A. et al. Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res.68, 843–851 (2008). ArticleCASPubMed Google Scholar
Fribley, A., Zeng, Q. & Wang, C. Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol. Cell. Biol.24, 9695–9704 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tsutsumi, S. et al. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ.11, 1009–1016 (2004). ArticleCASPubMed Google Scholar
Bernstein, W. B. & Dennis, P. A. Repositioning HIV protease inhibitors as cancer therapeutics. Curr. Opin. HIV AIDS3, 666–675 (2008). ArticlePubMedPubMed Central Google Scholar
Tai, D. J. et al. Changes in intracellular redox status influence multidrug resistance in gastric adenocarcinoma cells. Exp. Ther. Med.4, 291–296 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ryu, C. S. et al. Elevation of cysteine consumption in tamoxifen-resistant MCF-7 cells. Biochem. Pharmacol.85, 197–206 (2012). ArticleCASPubMed Google Scholar
Griffith, O. W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J. Biol. Chem.257, 13704–13712 (1982). CASPubMed Google Scholar
Loganathan, S., Kandala, P. K., Gupta, P. & Srivastava, S. K. Inhibition of EGFR-AKT axis results in the suppression of ovarian tumors in vitro and in preclinical mouse model. PLoS ONE7, e43577 (2012). ArticleCASPubMedPubMed Central Google Scholar
Trachootham, D. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell10, 241–252 (2006). ArticleCASPubMed Google Scholar
Suarez-Almazor, M. E., Belseck, E., Shea, B., Wells, G. & Tugwell, P. Sulfasalazine for rheumatoid arthritis. Cochrane Database Syst Rev.2009, CD000958 (2000). Google Scholar
Gout, P. W., Buckley, A. R., Simms, C. R. & Bruchovsky, N. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug. Leukemia15, 1633–1640 (2001). ArticleCASPubMed Google Scholar
Lo, M., Ling, V., Low, C., Wang, Y. Z. & Gout, P. W. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr. Oncol.17, 9–16 (2010). CASPubMedPubMed Central Google Scholar
Guan, J. et al. The xc- cystine/glutamate antiporter as a potential therapeutic target for small-cell lung cancer: use of sulfasalazine. Cancer Chemother. Pharmacol.64, 463–472 (2009). ArticleCASPubMed Google Scholar
Montero, A. J. et al. Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Res. Treat.132, 215–223 (2012). ArticleCASPubMed Google Scholar
Townsend, D. M. et al. NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res.68, 2870–2877 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sobhakumari, A. et al. Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism. PLoS ONE7, e48175 (2012). ArticleCASPubMedPubMed Central Google Scholar
Marzano, C. et al. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic. Biol. Med.42, 872–881 (2007). ArticleCASPubMed Google Scholar
Vaughn, A. E. & Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nature Cell Biol.10, 1477–1483 (2008). ArticleCASPubMed Google Scholar
Polimeni, M. et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem. J.439, 141–149 (2011). ArticleCASPubMed Google Scholar
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science324, 1029–1033 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, J. B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell18, 207–219 (2010). This work underlines the importance of metabolic adaptation in cancer cells. It demonstrates that glutamine metabolism is crucial for cancer cell survival. ArticleCASPubMedPubMed Central Google Scholar
Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell. Metab.15, 110–121 (2012). ArticleCASPubMedPubMed Central Google Scholar
Reinert, R. B. et al. Role of glutamine depletion in directing tissue-specific nutrient stress responses to l-asparaginase. J. Biol. Chem.281, 31222–31233 (2006). ArticleCASPubMed Google Scholar
Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell3, 285–296 (2003). This work demonstrates the potential of tailored therapeutic intervention against specific gene alterations in tumour cells. ArticleCASPubMed Google Scholar
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell149, 1060–1072 (2012). This paper describes a new form of cell death that depends on iron. ArticleCASPubMedPubMed Central Google Scholar
Shaw, A. T. et al. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc. Natl Acad. Sci. USA108, 8773–8778 (2011). ArticlePubMedPubMed Central Google Scholar
Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature462, 739–744 (2009). This study elucidates the presence of a novel metabolic pathway induced by a tumour-specific gene alteration. The finding offers the opportunity to develop a tailored anticancer therapy. ArticleCASPubMedPubMed Central Google Scholar
Sasaki, M. et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev.26, 2038–2049 (2012). ArticleCASPubMedPubMed Central Google Scholar
Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science339, 1621–1625 (2013). ArticleCASPubMed Google Scholar
Greenlee, H., Hershman, D. L. & Jacobson, J. S. Use of antioxidant supplements during breast cancer treatment: a comprehensive review. Breast Cancer Res. Treat.115, 437–452 (2009). ArticleCASPubMed Google Scholar
Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature486, 532–536 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bell, E. L. & Chandel, N. S. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem.43, 17–27 (2007). ArticleCASPubMed Google Scholar
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA95, 11715–11720 (1998). ArticleCASPubMedPubMed Central Google Scholar
Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med.365, 537–547 (2011). ArticleCASPubMed Google Scholar
Kincaid, M. M. & Cooper, A. A. ERADicate ER stress or die trying. Antioxid. Redox Signal.9, 2373–2387 (2007). ArticleCASPubMed Google Scholar
Bravo, R. et al. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int. J. Biochem. Cell Biol.44, 16–20 (2012). ArticleCASPubMed Google Scholar
Tanaka, H. et al. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell9, 1017–1029 (2002). ArticleCASPubMed Google Scholar
Irani, K. et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science275, 1649–1652 (1997). ArticleCASPubMed Google Scholar
Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem.274, 7936–7940 (1999). ArticleCASPubMed Google Scholar
Vafa, O. et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell.9, 1031–1044 (2002). ArticleCASPubMed Google Scholar
Meister, A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol. Ther.51, 155–194 (1991). ArticleCASPubMed Google Scholar
Murphy, M. P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal.16, 476–495 (2012). ArticleCASPubMed Google Scholar
Vurusaner, B., Poli, G. & Basaga, H. Tumor suppressor genes and ROS: complex networks of interactions. Free Radic. Biol. Med.52, 7–18 (2012). ArticleCASPubMed Google Scholar
Bouayed, J. & Bohn, T. Exogenous antioxidants — double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell Longev.3, 228–237 (2010). ArticlePubMedPubMed Central Google Scholar
Brigelius-Flohe, R. & Traber, M. G. Vitamin E: function and metabolism. FASEB J.13, 1145–1155 (1999). ArticleCASPubMed Google Scholar
Rayman, M. P. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc. Nutr. Soc.64, 527–542 (2005). ArticleCASPubMed Google Scholar
Burton, G. W. & Ingold, K. U. β-carotene: an unusual type of lipid antioxidant. Science224, 569–573 (1984). ArticleCASPubMed Google Scholar
Klaunig, J. E. & Kamendulis, L. M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol.44, 239–267 (2004). ArticleCASPubMed Google Scholar
Belfi, C. A., Chatterjee, S., Gosky, D. M., Berger, S. J. & Berger, N. A. Increased sensitivity of human colon cancer cells to DNA cross-linking agents after GRP78 up-regulation. Biochem. Biophys. Res. Commun.257, 361–368 (1999). ArticleCASPubMed Google Scholar
Dufour, E. et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas41, 940–948 (2012). ArticleCASPubMed Google Scholar
Pieters, R. et al. L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer117, 238–249 (2011). ArticleCASPubMed Google Scholar
O'Dwyer, P. J. et al. Phase I trial of buthionine sulfoximine in combination with melphalan in patients with cancer. J. Clin. Oncol.14, 249–256 (1996). ArticleCASPubMed Google Scholar
Lewis-Wambi, J. S. et al. Buthionine sulfoximine sensitizes antihormone-resistant human breast cancer cells to estrogen-induced apoptosis. Breast Cancer Res.10, R104 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhu, J. et al. Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J. Natl Cancer Inst.94, 1745–1757 (2002). ArticleCASPubMed Google Scholar
Gills, J. J. et al. Nelfinavir, a lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin. Cancer Res.13, 5183–5194 (2007). ArticleCASPubMed Google Scholar
Simunek, T. et al. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol. Rep.61, 154–171 (2009). ArticleCASPubMed Google Scholar
The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med.330, 1029–1035 (1994).
Omenn, G. S. et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med.334, 1150–1155 (1996). ArticleCASPubMed Google Scholar
Wang, F. et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science340, 622–626 (2013). ArticleCASPubMed Google Scholar