Phenotypic screening in cancer drug discovery — past, present and future (original) (raw)
Swinney, D. C. Phenotypic versus target-based drug discovery for first-in-class medicines. Clin. Pharmacol. Ther.93, 299–301 (2013). CASPubMed Google Scholar
Sams-Dodd, F. Is poor research the cause of the declining productivity of the pharmaceutical industry? An industry in need of a paradigm shift. Drug Discov. Today18, 211–217 (2013). PubMed Google Scholar
Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug Discov. Today10, 139–147 (2005). CASPubMed Google Scholar
Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nature Chem. Biol.4, 682–690 (2008). CAS Google Scholar
Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nature Rev. Drug Discov.5, 993–996 (2006). CAS Google Scholar
Butcher, E. C. Can cell systems biology rescue drug discovery? Nature Rev. Drug Discov.4, 461–467 (2005). CAS Google Scholar
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov.9, 203–214 (2010). CAS Google Scholar
Scannell, J. W., Blanckley, A., Boldon, H. & Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nature Rev. Drug Discov.11, 191–200 (2012). ArticleCAS Google Scholar
Bennani, Y. L. Drug discovery in the next decade: innovation needed ASAP. Drug Discov. Today16, 779–792 (2011). PubMed Google Scholar
Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol.6, 155–176 (2012). CASPubMedPubMed Central Google Scholar
Lee, J. A., Uhlik, M. T., Moxham, C. M., Tomandl, D. & Sall, D. J. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J. Med. Chem.55, 4527–4538 (2012). CASPubMed Google Scholar
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nature Rev. Drug Discov.10, 507–519 (2011). ArticleCAS Google Scholar
Arrowsmith, J. A decade of change. Nature Rev. Drug Discov.11, 17–18 (2012). CAS Google Scholar
Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer9, 28–39 (2009). Google Scholar
Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell153, 17–37 (2013). CASPubMed Google Scholar
Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nature Rev. Drug Discov.1, 493–502 (2002). CAS Google Scholar
Williams, R. Discontinued drugs in 2012: oncology drugs. Expert Opin. Investig. Drugs22, 1627–1644 (2013). CASPubMed Google Scholar
Ellis, L. M. & Fidler, I. J. Finding the tumor copycat. Therapy fails, patients don't. Nature Med.16, 974–975 (2010). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). CASPubMed Google Scholar
Carter, S. K. The search for therapeutic cell controls by the chemotherapy program of the National Cancer Institute. J. Invest. Dermatol.59, 128–138 (1972). CASPubMed Google Scholar
DeVita, V. T. & Chu, E. A history of cancer chemotherapy. Cancer Res.68, 8643–8653 (2008). CASPubMed Google Scholar
Kim, M.-J. et al. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett.335, 145–152 (2013). CASPubMed Google Scholar
Chan, D. A. & Giaccia, A. J. Harnessing synthetic lethal interactions in anticancer drug discovery. Nature Rev. Drug Discov.10, 351–364 (2011). CAS Google Scholar
Dolma, S., Lessnick, S. L., Hahn, W. C. & Stockwell, B. R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell3, 285–296 (2003). CASPubMed Google Scholar
Shaw, A. T. et al. Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress. Proc. Natl Acad. Sci. USA108, 8773–8778 (2011). CASPubMedPubMed Central Google Scholar
Weïwer, M. et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg. Med. Chem. Lett.22, 1822–1826 (2012). PubMed Google Scholar
Yoshida, T. et al. Identification and characterization of a novel chemotype MEK inhibitor able to alter the phosphorylation state of MEK1/2. Oncotarget3, 1533–1545 (2012). PubMedPubMed Central Google Scholar
Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res.5, 2638–2645 (1999). CASPubMed Google Scholar
O'Donnell, A. et al. Hormonal impact of the 17α-hydroxylase/C(17,20)-lyase inhibitor abiraterone acetate (CB7630) in patients with prostate cancer. Br. J. Cancer90, 2317–2325 (2004). CASPubMedPubMed Central Google Scholar
Boehm, M. F. et al. Design and synthesis of potent retinoid X receptor selective ligands that induce apoptosis in leukemia cells. J. Med. Chem.38, 3146–3155 (1995). CASPubMed Google Scholar
Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nature Biotech.25, 84–90 (2007). CAS Google Scholar
Shortt, J., Hsu, A. K. & Johnstone, R. W. Thalidomide-analogue biology: immunological, molecular and epigenetic targets in cancer therapy. Oncogene32, 4191–4202 (2013). CASPubMed Google Scholar
Lopez-Girona, A. et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia26, 2326–2335 (2012). CASPubMedPubMed Central Google Scholar
Licht, J. D., Shortt, J. & Johnstone, R. From anecdote to targeted therapy: the curious case of thalidomide in multiple myeloma. Cancer Cell25, 9–11 (2014). CASPubMedPubMed Central Google Scholar
Friend, C., Scher, W., Holland, J. G. & Sato, T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc. Natl Acad. Sci. USA68, 378–382 (1971). CASPubMedPubMed Central Google Scholar
Ueda, H. et al. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot.47, 301–310 (1994). CAS Google Scholar
Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M. & Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res.241, 126–133 (1998). CASPubMed Google Scholar
Hartford, C. M. & Ratain, M. J. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin. Pharmacol. Ther.82, 381–388 (2007). CASPubMed Google Scholar
Kuhn, D. J. et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood110, 3281–3290 (2007). CASPubMedPubMed Central Google Scholar
Huang, M. T. Harringtonine, an inhibitor of initiation of protein biosynthesis. Mol. Pharmacol.11, 511–519 (1975). CASPubMed Google Scholar
Jordan, M. A. et al. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther.4, 1086–1095 (2005). CASPubMed Google Scholar
Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science324, 787–790 (2009). CASPubMedPubMed Central Google Scholar
Wakeling, A. E. & Bowler, J. I.C. I. 182,780, a new antioestrogen with clinical potential. J. Steroid Biochem. Mol. Biol.43, 173–177 (1992). CASPubMed Google Scholar
Lee, F. Y. F. et al. Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer Chemother. Pharmacol.63, 157–166 (2008). CASPubMed Google Scholar
Galsky, M. D., Dritselis, A., Kirkpatrick, P. & Oh, W. K. Cabazitaxel. Nature Rev. Drug Discov.9, 677–678 (2010). CAS Google Scholar
Gandhi, V., Keating, M. J., Bate, G. & Kirkpatrick, P. Nelarabine. Nature Rev. Drug Discov.5, 17–18 (2006). CAS Google Scholar
Adjei, A. A. Pemetrexed: a multitargeted antifolate agent with promising activity in solid tumors. Ann. Oncol.11, 1335–1341 (2000). CASPubMed Google Scholar
Giuliani, F. C. & Kaplan, N. O. New doxorubicin analogs active against doxorubicin-resistant colon tumor xenografts in the nude mouse. Cancer Res.40, 4682–4687 (1980). CASPubMed Google Scholar
O'Dwyer, K. & Maslak, P. Azacitidine and the beginnings of therapeutic epigenetic modulation. Expert Opin. Pharmacother.9, 1981–1986 (2008). CASPubMed Google Scholar
Iyer, R., Fetterly, G., Lugade, A. & Thanavala, Y. Sorafenib: a clinical and pharmacologic review. Expert Opin. Pharmacother.11, 1943–1955 (2010). CASPubMed Google Scholar
Isaacs, J. T. The long and winding road for the development of tasquinimod as an oral second-generation quinoline-3-carboxamide antiangiogenic drug for the treatment of prostate cancer. Expert Opin. Investig. Drugs19, 1235–1243 (2010). CASPubMedPubMed Central Google Scholar
Isaacs, J. T. et al. Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res.73, 1386–1399 (2013). CASPubMed Google Scholar
Yagoda, N. et al. RAS–RAF–MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature447, 864–868 (2007). PubMedPubMed Central Google Scholar
Wong, H. et al. Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response. Clin. Cancer Res.18, 3846–3855 (2012). CASPubMed Google Scholar
Wong, H. et al. Bridging the gap between preclinical and clinical studies using pharmacokinetic-pharmacodynamic modeling: an analysis of GDC-0973, a MEK inhibitor. Clin. Cancer Res.18, 3090–3099 (2012). CASPubMed Google Scholar
Prinz, F., Schlange, T. & Asadullah, K. Believe it or not: how much can we rely on published data on potential drug targets? Nature Rev. Drug Discov.10, 712–712 (2011). CAS Google Scholar
Begley, C. G. & Ellis, L. M. Drug development: raise standards for preclinical cancer research. Nature483, 531–533 (2012). CASPubMed Google Scholar
Swinney, D. C. The contribution of mechanistic understanding to phenotypic screening for first-in-class medicines. J. Biomol. Screen.18, 1186–1192 (2013). PubMed Google Scholar
Mangana, J., Levesque, M. P., Karpova, M. B. & Dummer, R. Sorafenib in melanoma. Expert Opin. Investig. Drugs21, 557–568 (2012). CASPubMed Google Scholar
Munshi, N. et al. ARQ 197, a novel and selective inhibitor of the human c-Met receptor tyrosine kinase with antitumor activity. Mol. Cancer Ther.9, 1544–1553 (2010). CASPubMed Google Scholar
Michieli, P. & Di Nicolantonio, F. Targeted therapies: Tivantinib — a cytotoxic drug in MET inhibitor's clothes? Nature Rev. Clin. Oncol.10, 372–374 (2013). CAS Google Scholar
Basilico, C. et al. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin. Cancer Res.19, 2381–2392 (2013). CASPubMed Google Scholar
Katayama, R. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res.73, 3087–3096 (2013). CASPubMedPubMed Central Google Scholar
Reddy, M. V. R. et al. Discovery of a clinical stage multi-kinase inhibitor sodium (E)-2-{2-methoxy-5-[(2′,4“,6”-trimethoxystyrylsulfonyl)methyl]phenylamino}acetate (ON 01910. Na): synthesis, structure-activity relationship, and biological activity. J. Med. Chem.54, 6254–6276 (2011). CASPubMedPubMed Central Google Scholar
Jimeno, A. et al. Phase I study of ON 01910. Na, a novel modulator of the Polo-like kinase 1 pathway, in adult patients with solid tumors. J. Clin. Oncol.26, 5504–5510 (2008). CASPubMedPubMed Central Google Scholar
Roschewski, M., Farooqui, M., Aue, G., Wilhelm, F. & Wiestner, A. Phase I study of ON 01910. Na (Rigosertib), a multikinase PI3K inhibitor in relapsed/refractory B-cell malignancies. Leukemia27, 1920–1923 (2013). CASPubMedPubMed Central Google Scholar
Prasad, A. et al. Styryl sulfonyl compounds inhibit translation of cyclin D1 in mantle cell lymphoma cells. Oncogene28, 1518–1528 (2009). CASPubMed Google Scholar
Chapman, C. M. et al. ON 01910. Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress. Clin. Cancer Res.18, 1979–1991 (2012). CASPubMedPubMed Central Google Scholar
Nakahara, T. et al. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts. Cancer Res.67, 8014–8021 (2007). CASPubMed Google Scholar
Glaros, T. G. et al. The 'survivin suppressants' NSC 80467 and YM155 induce a DNA damage response. Cancer Chemother. Pharmacol.70, 207–212 (2012). CASPubMed Google Scholar
Lewis, K. D. et al. A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest. New Drugs29, 161–166 (2009). PubMed Google Scholar
Kelly, R. J. et al. A phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol.24, 2601–2606 (2013). CASPubMedPubMed Central Google Scholar
Giaccone, G. et al. Multicenter Phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J. Clin. Oncol.27, 4481–4486 (2009). CASPubMed Google Scholar
Coumar, M. S., Tsai, F.-Y., Kanwar, J. R., Sarvagalla, S. & Cheung, C. H. A. Treat cancers by targeting survivin: just a dream or future reality? Cancer Treat. Rev.39, 802–811 (2013). CASPubMed Google Scholar
Ledford, H. Drug candidates derailed in case of mistaken identity. Nature483, 519 (2012). CASPubMed Google Scholar
Hwang, S. G. et al. Anti-cancer activity of a novel small molecule compound that simultaneously activates p53 and inhibits NF-κB signaling. PLoS ONE7, e44259 (2012). CASPubMedPubMed Central Google Scholar
Caie, P. D. et al. High-content phenotypic profiling of drug response signatures across distinct cancer cells. Mol. Cancer Ther.9, 1913–1926 (2010). CASPubMed Google Scholar
Low, J. et al. Phenotypic fingerprinting of small molecule cell cycle kinase inhibitors for drug discovery. Curr. Chem. Genom.3, 13–21 (2009). CAS Google Scholar
Chan, G. K. Y., Kleinheinz, T. L., Peterson, D. & Moffat, J. G. A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays. PLoS ONE8, e63583 (2013). CASPubMedPubMed Central Google Scholar
Kimlin, L. C., Casagrande, G. & Virador, V. M. In vitro three-dimensional (3D) models in cancer research: an update. Mol. Carcinog.52, 167–182 (2013). PubMed Google Scholar
Harrison, R. G. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool.9, 787–846 (1910). Google Scholar
Drewitz, M. et al. Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues. Biotechnol. J.6, 1488–1496 (2011). CASPubMed Google Scholar
Hsiao, A. Y. et al. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed. Microdevices14, 313–323 (2012). CASPubMedPubMed Central Google Scholar
LaBarbera, D. V., Reid, B. G. & Yoo, B. H. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin. Drug Discov.7, 819–830 (2012). CASPubMed Google Scholar
Li, Q. et al. 3D models of epithelial-mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. J. Biomol. Screen.16, 141–154 (2011). CASPubMed Google Scholar
Korff, T. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol.143, 1341–1352 (1998). CASPubMedPubMed Central Google Scholar
Friedrich, J., Seidel, C., Ebner, R. & Kunz-Schughart, L. A spheroid-based drug screen: considerations and practical approach. Nature Protoc.4, 309–324 (2009). CAS Google Scholar
Misund, K. et al. A method for measurement of drug sensitivity of myeloma cells co-cultured with bone marrow stromal cells. J. Biomol. Screen18, 637–646 (2013). PubMed Google Scholar
Haglund, C. et al. In vitro evaluation of clinical activity and toxicity of anticancer drugs using tumor cells from patients and cells representing normal tissues. Cancer Chemother. Pharmacol.69, 697–707 (2012). CASPubMed Google Scholar
Carmody, L. C. et al. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells. J. Biomol. Screen17, 1204–1210 (2012). PubMed Google Scholar
Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nature Rev. Cancer12, 767–775 (2012). CAS Google Scholar
Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell10, 717–728 (2012). CASPubMed Google Scholar
Romaguera-Ros, M. et al. Cancer-initiating enriched cell lines from human glioblastoma: preparing for drug discovery assays. Stem Cell Rev.8, 288–298 (2012). CAS Google Scholar
Lee, T. K. W., Cheung, V. C. H. & Ng, I. O. L. Liver tumor-initiating cells as a therapeutic target for hepatocellular carcinoma. Cancer Lett.338, 101–109 (2013). CASPubMed Google Scholar
Izrailit, J. & Reedijk, M. Developmental pathways in breast cancer and breast tumor-initiating cells: therapeutic implications. Cancer Lett.317, 115–126 (2012). CASPubMed Google Scholar
Morrison, B. J., Morris, J. C. & Steel, J. C. Lung cancer-initiating cells: a novel target for cancer therapy. Target Oncol.8, 159–172 (2013). PubMedPubMed Central Google Scholar
Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell141, 69–80 (2010). CASPubMedPubMed Central Google Scholar
Yan, H. et al. Drug-tolerant cancer cells show reduced tumor-initiating capacity: depletion of CD44 cells and evidence for epigenetic mechanisms. PLoS ONE6, e24397 (2011). CASPubMedPubMed Central Google Scholar
Lee, G.-Y. et al. Stochastic acquisition of a stem cell-like state and drug tolerance in leukemia cells stressed by radiation. Int. J. Hematol.93, 27–35 (2011). PubMed Google Scholar
Cheng, Z. et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res.19, 1748–1759 (2013). CASPubMedPubMed Central Google Scholar
Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nature Rev. Drug Discov.11, 384–400 (2012). CAS Google Scholar
Qian, J., Lu, L., Wu, J. & Ma, H. Development of multiple cell-based assays for the detection of histone H3 Lys27 trimethylation (H3K27me3). Assay Drug Dev. Technol.11, 449–456 (2013). CASPubMedPubMed Central Google Scholar
Mulji, A. et al. Configuration of a high-content imaging platform for hit identification and pharmacological assessment of JMJD3 demethylase enzyme inhibitors. J. Biomol. Screen.17, 108–120 (2012). CASPubMed Google Scholar
Snuderl, M. et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell20, 810–817 (2011). CASPubMed Google Scholar
Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. USA110, 4009–4014 (2013). CASPubMedPubMed Central Google Scholar
Jiang, P. et al. Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J. Transl. Med.12, 13 (2014). PubMedPubMed Central Google Scholar
Joshi, A. D. et al. Evaluation of tyrosine kinase inhibitor combinations for glioblastoma therapy. PLoS ONE7, e44372 (2012). CASPubMedPubMed Central Google Scholar
Engström, P. G. et al. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival. Genome Med.4, 76 (2012). PubMedPubMed Central Google Scholar
Vitucci, M. et al. Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis. Neuro-Oncol.15, 1317–1329 (2013). CASPubMedPubMed Central Google Scholar
Kaur, G. et al. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86-8275. J. Natl Cancer Inst.84, 1736–1740 (1992). CASPubMed Google Scholar
Bax, D. A. et al. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS ONE4, e5209 (2009). PubMedPubMed Central Google Scholar
Breuleux, M. et al. BAL27862: a unique microtubule destabilizer active against chemorefractory breast cancers. Cancer Res.69 (Suppl. 24), 2093 (2010). Google Scholar
Joo, K. M. et al. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. Cell Rep.3, 260–273 (2013). CASPubMed Google Scholar
Danovi, D., Folarin, A. A., Baranowski, B. & Pollard, S. M. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines. Methods Enzymol.506, 311–329 (2012). CASPubMed Google Scholar
Mendelsohn, J. Personalizing oncology: perspectives and prospects. J. Clin. Oncol.31, 1904–1911 (2013). CASPubMed Google Scholar
Sha, S.-K. et al. Cell cycle phenotype-based optimization of G2-abrogating peptides yields CBP501 with a unique mechanism of action at the G2 checkpoint. Mol. Cancer Ther.6, 147–153 (2007). CASPubMed Google Scholar
Hangauer, D. G. Compositions for treating cell proliferation disorders. US Patent 7300931 (2007).
Dvorakova, K. et al. Induction of oxidative stress and apoptosis in myeloma cells by the aziridine-containing agent imexon. Biochem. Pharmacol.60, 749–758 (2000). CASPubMed Google Scholar
Vidal, A. et al. Lurbinectedin (PM01183), a new DNA minor groove binder, inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer. Clin. Cancer Res.18, 5399–5411 (2012). CASPubMed Google Scholar
Hayakawa, F. et al. A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J.3, e166–e169 (2013). CASPubMedPubMed Central Google Scholar
Guirouilh-Barbat, J., Antony, S. & Pommier, Y. Zalypsis (PM00104) is a potent inducer of γ-H2AX foci and reveals the importance of the C ring of trabectedin for transcription-coupled repair inhibition. Mol. Cancer Ther.8, 2007–2014 (2009). CASPubMedPubMed Central Google Scholar
Wiman, K. G. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene29, 4245–4252 (2010). CASPubMed Google Scholar
Kirshner, J. R. et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther.7, 2319–2327 (2008). CASPubMed Google Scholar
Sahasrabudhe, S. R. et al. Selective in vitro and in vivo anti-tumor activity of PRLX 93936 in biological models of melanoma and ovarian cancer. J. Clin. Oncol.26, 14586 (2008). Google Scholar
Funahashi, Y. et al. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin α2 subunit on endothelium. Cancer Res.62, 6116–6123 (2002). CASPubMed Google Scholar
Chau, C. H. & Figg, W. D. New tricks from an old drug: a role for quinacrine in anti-cancer therapy? Cell Cycle8, 4024–4025 (2009). CASPubMed Google Scholar
Gumireddy, K. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell7, 275–286 (2005). CASPubMed Google Scholar
Hawtin, R. E. et al. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS ONE5, e10186 (2010). PubMedPubMed Central Google Scholar
Tozer, G. M. et al. Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res.59, 1626–1634 (1999). CASPubMed Google Scholar
Urdiales, J., Morata, P., De Castro, I. N. & Sánchez-Jiménez, F. Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett.102, 31–37 (1996). CASPubMed Google Scholar
Takahashi-Yanaga, F. & Kahn, M. Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin. Cancer. Res.16, 3153–3162 (2010). CASPubMed Google Scholar
Robarge, K. D. et al. GDC-0449 — a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett.19, 5576–5581 (2009). CASPubMed Google Scholar
Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chem. Biol.5, 100–107 (2009). CAS Google Scholar
Yamaguchi, T. et al. Identification of JTP-70902, a p15(INK4b)-inductive compound, as a novel MEK1/2 inhibitor. Cancer Sci.98, 1809–1816 (2007). CASPubMed Google Scholar
Li, H. et al. Versatile pathway-centric approach based on high-throughput sequencing to anticancer drug discovery. Proc. Natl Acad. Sci. USA109, 4609–4614 (2012). CASPubMedPubMed Central Google Scholar
Stoops, S. L. et al. Identification and optimization of small molecules that restore E-cadherin expression and reduce invasion in colorectal carcinoma cells. ACS Chem. Biol.6, 452–465 (2011). CASPubMedPubMed Central Google Scholar
Lavelin, I. et al. Discovery of novel proteasome inhibitors using a high-content cell-based screening system. PLoS ONE4, e8503 (2009). PubMedPubMed Central Google Scholar
Zhang, L. et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl Acad. Sci. USA104, 19023–19028 (2007). CASPubMedPubMed Central Google Scholar
Roller, D. G. et al. Synthetic lethal screening with small-molecule inhibitors provides a pathway to rational combination therapies for melanoma. Mol. Cancer Ther.11, 2505–2515 (2012). CASPubMedPubMed Central Google Scholar
McLaughlin, J. et al. Preclinical characterization of Aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen. J. Cancer Res. Clin. Oncol.136, 99–113 (2010). CASPubMed Google Scholar
Mayer, T. U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science286, 971–974 (1999). CASPubMed Google Scholar
Guzi, T. J. et al. Targeting the replication checkpoint using SCH 900776, a potent and functionally selective CHK1 inhibitor identified via high content screening. Mol. Cancer Ther.10, 591–602 (2011). CASPubMed Google Scholar
Quintavalle, M., Elia, L., Price, J. H., Heynen-Genel, S. & Courtneidge, S. A. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Sci. Signal.4, ra49 (2011). CASPubMedPubMed Central Google Scholar
Lee, J. et al. A small molecule inhibitor of α4 integrin-dependent cell migration. Bioorg. Med. Chem.17, 977–980 (2009). CASPubMed Google Scholar
Yarrow, J. C., Totsukawa, G., Charras, G. T. & Mitchison, T. J. Screening for cell migration inhibitors via automated microscopy reveals a Rho-kinase inhibitor. Chem. Biol.12, 385–395 (2005). CASPubMed Google Scholar
Stevens, M. F. & Newlands, E. S. From triazines and triazenes to temozolomide. Eur. J. Cancer29A, 1045–1047 (1993). CASPubMed Google Scholar
Gottardis, M. M. et al. Chemoprevention of mammary carcinoma by LGD1069 (Targretin): an RXR-selective ligand. Cancer Res.56, 5566–5570 (1996). CASPubMed Google Scholar
Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res.56, 100–104 (1996). CASPubMed Google Scholar
Arteaga, C. L. & Johnson, D. H. Tyrosine kinase inhibitors-ZD1839 (Iressa). Curr. Opin. Oncol.13, 491–498 (2001). CASPubMed Google Scholar
Carson, D. A. et al. Oral antilymphocyte activity and induction of apoptosis by 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine. Proc. Natl Acad. Sci. USA89, 2970–2974 (1992). CASPubMedPubMed Central Google Scholar
Taylor, E. C. et al. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, _N_-[4-[2-(2-amino-3,4-dihydro-4-oxo-7_H_-pyrrolo[2,3-d]pyrimidin-5- yl)ethyl]benzoyl]-l-glutamic acid, is an inhibitor of thymidylate synthase. J. Med. Chem.35, 4450–4454 (1992). CASPubMed Google Scholar
Moyer, J. D. et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res.57, 4838–4848 (1997). CASPubMed Google Scholar
Giudici, D. et al. 6-methylenandrosta-1,4-diene-3, 17-dione (FCE 24304): a new irreversible aromatase inhibitor. J. Steroid Biochem.30, 391–394 (1988). CASPubMed Google Scholar
Kotla, V. et al. Mechanism of action of lenalidomide in hematological malignancies. J. Hematol. Oncol.2, 36 (2009). PubMedPubMed Central Google Scholar
Gandhi, V. et al. Compound GW506U78 in refractory hematologic malignancies: relationship between cellular pharmacokinetics and clinical response. J. Clin. Oncol.16, 3607–3615 (1998). CASPubMed Google Scholar
Lombardo, L. J. et al. Discovery of _N_-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem.47, 6658–6661 (2004). CASPubMed Google Scholar
Sun, L. et al. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl- 1_H_-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem.46, 1116–1119 (2003). CASPubMed Google Scholar
Weisberg, E. et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell7, 129–141 (2005). CASPubMed Google Scholar
Wilhelm, S. & Chien, D.-S. BAY 43-9006: preclinical data. Curr. Pharm. Des.8, 2255–2257 (2002). CASPubMed Google Scholar
Leoni, L. M. et al. Bendamustine (Treanda) displays a distinct pattern of cytotoxicity and unique mechanistic features compared with other alkylating agents. Clin. Cancer Res.14, 309–317 (2008). CASPubMed Google Scholar
Podar, K. et al. The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc. Natl Acad. Sci. USA103, 19478–19483 (2006). CASPubMedPubMed Central Google Scholar
Xia, W. et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene21, 6255–6263 (2002). CASPubMed Google Scholar
Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17,20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem.38, 2463–2471 (1995). CASPubMed Google Scholar
Cui, J. J. et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem.54, 6342–6363 (2011). CASPubMed Google Scholar
Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood115, 3109–3117 (2010). PubMedPubMed Central Google Scholar
Hennequin, L. F. et al. Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J. Med. Chem.45, 1300–1312 (2002). CASPubMed Google Scholar
Bollag, G. et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature Rev. Drug Discov.11, 873–886 (2012). CAS Google Scholar
Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol.165, 35–52 (2004). CASPubMedPubMed Central Google Scholar
Puttini, M. et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res.66, 11314–11322 (2006). CASPubMed Google Scholar
Zhang, Y., Guessous, F., Kofman, A., Schiff, D. & Abounader, R. XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs13, 112–121 (2010). PubMedPubMed Central Google Scholar
Demo, S. D. et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res.67, 6383–6391 (2007). CASPubMed Google Scholar
Huang, W.-S. et al. Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-_N_-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant. J. Med. Chem.53, 4701–4719 (2010). CASPubMed Google Scholar
Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene27, 4702–4711 (2008). CASPubMedPubMed Central Google Scholar
Medina, T., Amaria, M. N. & Jimeno, A. Dabrafenib in the treatment of advanced melanoma. Drugs Today49, 377–385 (2013). CAS Google Scholar
Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA107, 13075–13080 (2010). CASPubMedPubMed Central Google Scholar