- Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).
PubMed Google Scholar
- Gonsalves, W. I. et al. Prognostic significance of quantifying circillating plasma cells in multiple myeloma. Clin. Lymphoma Myeloma Leuk. 14, S147 (2014).
Google Scholar
- Drayson, M. et al. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood 97, 2900–2902 (2001).
CAS PubMed Google Scholar
- Kyle, R. A. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin. Proc. 78, 21–33 (2003).
PubMed Google Scholar
- Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538–e548 (2014). This is the current diagnostic criteria for multiple myeloma and related disorders.
PubMed Google Scholar
- Turesson, I., Velez, R., Kristinsson, S. Y. & Landgren, O. Patterns of multiple myeloma during the past 5 decades: stable incidence rates for all age groups in the population but rapidly changing age distribution in the clinic. Mayo Clin. Proc. 85, 225–230 (2010).
PubMed PubMed Central Google Scholar
- Landgren, O. et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113, 5412–5417 (2009).
CAS PubMed PubMed Central Google Scholar
- Kyle, R. A. et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 346, 564–569 (2002). This is the first large epidemiological study that defined the natural history of MGUS.
PubMed Google Scholar
- Kyle, R. A. et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 356, 2582–2590 (2007). This is the first large epidemiological study that defined the natural history of SMM and the risk of progression.
CAS PubMed Google Scholar
- Waxman, A. J. et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood 116, 5501–5506 (2010).
CAS PubMed PubMed Central Google Scholar
- Huang, S. Y. et al. Epidemiology of multiple myeloma in Taiwan: increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer 110, 896–905 (2007).
PubMed Google Scholar
- Kyle, R. A., Nobrega, F. T. & Kurland, L. T. Multiple myeloma in Olmsted County, Minnesota, 1945–1964. Blood 33, 739–745 (1969).
CAS PubMed Google Scholar
- Kyle, R. A. et al. Incidence of multiple myeloma in Olmsted County, Minnesota — trend over 6 decades. Cancer 101, 2667–2674 (2004).
PubMed Google Scholar
- Baris, D. in Neoplastic Diseases of Blood (ed. Wiernik, P. ) 547–563 (Springer, 2013).
Google Scholar
- Kumar, S. K. et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia 28, 1122–1128 (2014). This study demonstrates the improving survival in patients with multiple myeloma.
CAS PubMed Google Scholar
- Ichimaru, M., Ishimaru, T., Mikami, M. & Matsunaga, M. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950–76: relationship to radiation dose absorbed by marrow. J. Natl Cancer Inst. 69, 323–328 (1982).
CAS PubMed Google Scholar
- Preston, D. L. et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res. 137, S68–S97 (1994).
CAS PubMed Google Scholar
- Khuder, S. A. & Mutgi, A. B. Meta-analyses of multiple myeloma and farming. Am. J. Ind. Med. 32, 510–516 (1997).
CAS PubMed Google Scholar
- Burmeister, L. F. Cancer mortality in Iowa farmers, 1971–1978. J. Natl Cancer Inst. 66, 461–464 (1981).
CAS PubMed Google Scholar
- Altekruse, S. F., Henley, S. J. & Thun, M. J. Deaths from hematopoietic and other cancers in relation to permanent hair dye use in a large prospective study (United States). Cancer Causes Control 10, 617–625 (1999).
CAS PubMed Google Scholar
- Bergsagel, D. E. et al. Benzene and multiple myeloma: appraisal of the scientific evidence. Blood 94, 1174–1182 (1999).
CAS PubMed Google Scholar
- Maldonado, J. E. & Kyle, R. A. Familial myeloma. Report of eight families and a study of serum proteins in their relatives. Am. J. Med. 57, 875–884 (1974).
CAS PubMed Google Scholar
- Vachon, C. M. et al. Increased risk of monoclonal gammopathy in first-degree relatives of patients with multiple myeloma or monoclonal gammopathy of undetermined significance. Blood 114, 785–790 (2009).
CAS PubMed PubMed Central Google Scholar
- Mitchell, J. S. et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 7, 12050 (2016).
CAS PubMed PubMed Central Google Scholar
- Johnson, D. C. et al. Genome-wide association study identifies variation at 6q25.1 associated with survival in multiple myeloma. Nat. Commun. 7, 10290 (2016).
CAS PubMed PubMed Central Google Scholar
- Ziv, E. et al. Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nat. Commun. 6, 7539 (2015).
CAS PubMed Google Scholar
- Johnson, D. C. et al. Genetic factors influencing the risk of multiple myeloma bone disease. Leukemia 30, 883–888 (2016).
CAS PubMed PubMed Central Google Scholar
- Magrangeas, F. et al. A genome-wide association study identifies a novel locus for bortezomib-induced peripheral neuropathy in European patients with multiple myeloma. Clin. Cancer Res. 22, 4350–4355 (2016).
CAS PubMed PubMed Central Google Scholar
- Gonzalez, D. et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood 110, 3112–3121 (2007).
CAS PubMed Google Scholar
- Morgan, G. J., Walker, B. A. & Davies, F. E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer 12, 335–348 (2012).
CAS PubMed Google Scholar
- Manier, S., Kawano, Y., Bianchi, G., Roccaro, A. M. & Ghobrial, I. M. Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Curr. Opin. Hematol. 23, 426–433 (2016).
CAS PubMed Google Scholar
- Bergsagel, P. L. et al. Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc. Natl Acad. Sci. USA 93, 13931–13936 (1996).
CAS PubMed PubMed Central Google Scholar
- Bergsagel, P. L. & Kuehl, W. M. Molecular pathogenesis and a consequent classification of multiple myeloma. J. Clin. Oncol. 23, 6333–6338 (2005).
CAS PubMed Google Scholar
- Walker, B. A. et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J. Clin. Oncol. 33, 3911–3920 (2015). This is one of the largest studies to show the range of mutations in multiple myeloma.
CAS PubMed Google Scholar
- Hakim, O. et al. DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature 484, 69–74 (2012).
CAS PubMed PubMed Central Google Scholar
- Avet-Loiseau, H. et al. 14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone Myelome. Cancer Res. 59, 4546–4550 (1999).
CAS PubMed Google Scholar
- Ross, F. M. et al. The t(14;20) is a poor prognostic factor in myeloma but is associated with long-term stable disease in monoclonal gammopathies of undetermined significance. Haematologica 95, 1221–1225 (2010).
PubMed PubMed Central Google Scholar
- Rajkumar, S. V. et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia 27, 1738–1744 (2013).
CAS PubMed PubMed Central Google Scholar
- Chretien, M. L. et al. Understanding the role of hyperdiploidy in myeloma prognosis: which trisomies really matter? Blood 126, 2713–2719 (2015).
CAS PubMed PubMed Central Google Scholar
- Sawyer, J. R. et al. Hyperhaploidy is a novel high-risk cytogenetic subgroup in multiple myeloma. Leukemia 31, 637–644 (2017).
CAS PubMed Google Scholar
- Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).
CAS PubMed Google Scholar
- Avet-Loiseau, H. et al. Chromosomal abnormalities are major prognostic factors in elderly patients with multiple myeloma: the Intergroupe Francophone du Myelome experience. J. Clin. Oncol. 31, 2806–2809 (2013).
PubMed PubMed Central Google Scholar
- Bouchard, C. et al. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J. 18, 5321–5333 (1999).
CAS PubMed PubMed Central Google Scholar
- Chng, W. J. et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 25, 1026–1035 (2011).
CAS PubMed PubMed Central Google Scholar
- Bolli, N. et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat. Commun. 5, 2997 (2014).
PubMed Google Scholar
- Lohr, J. G. et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25, 91–101 (2014).
CAS PubMed PubMed Central Google Scholar
- Rashid, N. U. et al. Differential and limited expression of mutant alleles in multiple myeloma. Blood 124, 3110–3117 (2014).
CAS PubMed PubMed Central Google Scholar
- Keats, J. J. et al. Clonal competition with alternating dominance in multiple myeloma. Blood 120, 1067–1076 (2012).
CAS PubMed PubMed Central Google Scholar
- Weinhold, N. et al. High risk multiple myeloma demonstrates marked spatial genomic heterogeneity between focal lesions and random bone marrow; implications for targeted therapy and treatment resistance. Blood 126, 20 (2015).
Google Scholar
- Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).
CAS PubMed PubMed Central Google Scholar
- Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).
CAS PubMed PubMed Central Google Scholar
- Cormier, F. et al. Frequent engagement of RelB activation is critical for cell survival in multiple myeloma. PLoS ONE 8, e59127 (2013).
CAS PubMed PubMed Central Google Scholar
- Agirre, X. et al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res. 25, 478–487 (2015).
CAS PubMed PubMed Central Google Scholar
- Heuck, C. J. et al. Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis. J. Immunol. 190, 2966–2975 (2013).
CAS PubMed Google Scholar
- Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).
CAS PubMed PubMed Central Google Scholar
- Pichiorri, F. et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc. Natl Acad. Sci. USA 105, 12885–12890 (2008).
CAS PubMed PubMed Central Google Scholar
- Galm, O., Yoshikawa, H., Esteller, M., Osieka, R. & Herman, J. G. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 101, 2784–2788 (2003).
CAS PubMed Google Scholar
- Puthier, D. et al. Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br. J. Haematol. 107, 392–395 (1999).
CAS PubMed Google Scholar
- Zhao, J. J. et al. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/beta-catenin/BCL9 pathway. Cancer Res. 74, 1801–1813 (2014).
CAS PubMed PubMed Central Google Scholar
- Tagde, A. et al. MUC1-C drives MYC in multiple myeloma. Blood 127, 2587–2597 (2016).
CAS PubMed PubMed Central Google Scholar
- Cyster, J. G. Homing of antibody secreting cells. Immunol. Rev. 194, 48–60 (2003).
CAS PubMed Google Scholar
- Zhu, D. et al. The cyclophilin A–CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat. Med. 21, 572–580 (2015).
CAS PubMed PubMed Central Google Scholar
- Ghobrial, I. M. Myeloma as a model for the process of metastasis: implications for therapy. Blood 120, 20–30 (2012).
CAS PubMed PubMed Central Google Scholar
- Roodman, G. D. Mechanisms of bone lesions in multiple myeloma and lymphoma. Cancer 80, 1557–1563 (1997).
CAS PubMed Google Scholar
- Roodman, G. D. Pathogenesis of myeloma bone disease. Leukemia 23, 435–441 (2009).
CAS PubMed Google Scholar
- Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667 (1999).
CAS PubMed Google Scholar
- McMillin, D. W. et al. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat. Med. 16, 483–489 (2010).
CAS PubMed PubMed Central Google Scholar
- Roccaro, A. M. et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J. Clin. Invest. 123, 1542–1555 (2013).
CAS PubMed PubMed Central Google Scholar
- Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005).
CAS PubMed PubMed Central Google Scholar
- Roccaro, A. M. et al. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 113, 6669–6680 (2009).
CAS PubMed PubMed Central Google Scholar
- Rajkumar, S. V. et al. Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin. Cancer Res. 8, 2210–2216 (2002).
PubMed Google Scholar
- Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226–231 (2008).
CAS PubMed PubMed Central Google Scholar
- Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).
PubMed Google Scholar
- Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).
CAS PubMed Google Scholar
- Eichner, R. et al. Immunomodulatory drugs disrupt the cereblon–CD147–MCT1 axis to exert antitumor activity and teratogenicity. Nat. Med. 22, 735–743 (2016).
CAS PubMed Google Scholar
- Walters, D. K., Arendt, B. K. & Jelinek, D. F. CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 12, 3175–3183 (2013).
CAS PubMed PubMed Central Google Scholar
- Gass, J. N., Gifford, N. M. & Brewer, J. W. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem. 277, 49047–49054 (2002).
CAS PubMed Google Scholar
- Aronson, L. I. & Davies, F. E. DangER: protein ovERload. Targeting protein degradation to treat myeloma. Haematologica 97, 1119–1130 (2012).
CAS PubMed PubMed Central Google Scholar
- Leung-Hagesteijn, C. et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24, 289–304 (2013).
CAS PubMed PubMed Central Google Scholar
- Abe, M., Harada, T. & Matsumoto, T. Concise review: defining and targeting myeloma stem cell-like cells. Stem Cells 32, 1067–1073 (2014).
CAS PubMed Google Scholar
- Lamy, L. et al. Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23, 435–449 (2013).
CAS PubMed PubMed Central Google Scholar
- Goldschmidt, H., Lannert, H., Bommer, J. & Ho, A. D. Multiple myeloma and renal failure. Nephrol. Dial. Transplant. 15, 301–304 (2000).
CAS PubMed Google Scholar
- Batuman, V. The pathogenesis of acute kidney impairment in patients with multiple myeloma. Adv. Chronic Kidney Dis. 19, 282–286 (2012).
PubMed Google Scholar
- Dimopoulos, M. A. et al. Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group. J. Clin. Oncol. 28, 4976–4984 (2010).
PubMed Google Scholar
- Dimopoulos, M. et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 117, 4701–4705 (2011).
CAS PubMed Google Scholar
- Kyle, R. A. & Rajkumar, S. V. Multiple myeloma. N. Engl. J. Med. 351, 1860–1873 (2004).
CAS PubMed Google Scholar
- Hillengass, J. et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J. Clin. Oncol. 28, 1606–1610 (2010).
PubMed Google Scholar
- Kastritis, E., Moulopoulos, L. A., Terpos, E., Koutoulidis, V. & Dimopoulos, M. A. The prognostic importance of the presence of more than one focal lesion in spine MRI of patients with asymptomatic (smoldering) multiple myeloma. Leukemia 28, 2402–2403 (2014).
CAS PubMed Google Scholar
- Sonneveld, P. et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood 127, 2955–2962 (2016). This paper is a consensus approach to the treatment of high-risk multiple myeloma.
CAS PubMed PubMed Central Google Scholar
- Kumar, S. et al. Trisomies in multiple myeloma: impact on survival in patients with high-risk cytogenetics. Blood 119, 2100–2105 (2012).
CAS PubMed PubMed Central Google Scholar
- Hebraud, B. et al. Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience. Blood 125, 2095–2100 (2015).
CAS PubMed PubMed Central Google Scholar
- Leiba, M. et al. Translocation t(11;14) in newly diagnosed patients with multiple myeloma: is it always favorable? Genes Chromosomes Cancer 55, 710–718 (2016).
CAS PubMed Google Scholar
- Mikhael, J. R. et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin. Proc. 88, 360–376 (2013).
PubMed Google Scholar
- Chng, W. J. et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia 28, 269–277 (2014).
CAS PubMed Google Scholar
- Boyd, K. D. et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia 26, 349–355 (2012).
CAS PubMed Google Scholar
- Greipp, P. R. et al. International Staging System for Multiple Myeloma. J. Clin. Oncol. 23, 3412–3420 (2005).
PubMed Google Scholar
- Palumbo, A. et al. Revised International Staging System for Multiple Myeloma: a report from International Myeloma Working Group. J. Clin. Oncol. 33, 2863–2869 (2015). This is a large multicentre cohort of patients and is currently the most relevant risk stratification system.
CAS PubMed PubMed Central Google Scholar
- Sigurdardottir, E. E. et al. The role of diagnosis and clinical follow-up of monoclonal gammopathy of undetermined significance on survival in multiple myeloma. JAMA Oncol. 1, 168–174 (2015).
PubMed Google Scholar
- Bianchi, G. et al. Impact of optimal follow-up of monoclonal gammopathy of undetermined significance on early diagnosis and prevention of myeloma-related complications. Blood 116, 2019–2025 (2010).
CAS PubMed PubMed Central Google Scholar
- Rajkumar, S. V. et al. Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance. Blood 106, 812–817 (2005).
CAS PubMed PubMed Central Google Scholar
- Mateos, M. V. & San Miguel, J. V. Smoldering multiple myeloma. Hematol. Oncol. 33 (Suppl. 1), 33–37 (2015).
PubMed Google Scholar
- Mateos, M. V. et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N. Engl. J. Med. 369, 438–447 (2013).
CAS PubMed Google Scholar
- Mateos, M. V. et al. Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex): long-term follow-up of a randomised, controlled, phase 3 trial. Lancet 17, 1127–1136 (2016).
CAS Google Scholar
- Korde, N. et al. Treatment with carfilzomib–lenalidomide–dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 1, 746–754 (2015).
PubMed PubMed Central Google Scholar
- Knudsen, L. M., Rasmussen, T., Jensen, L. & Johnsen, H. E. Reduced bone marrow stem cell pool and progenitor mobilisation in multiple myeloma after melphalan treatment. Med. Oncol. 16, 245–254 (1999).
CAS PubMed Google Scholar
- Rajkumar, S. V. et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 11, 29–37 (2010).
CAS PubMed Google Scholar
- Durie, B. G. et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet 389, 519–527 (2017).
CAS PubMed Google Scholar
- Cavo, M. et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet 376, 2075–2085 (2010).
CAS PubMed Google Scholar
- Kumar, S. et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood 119, 4375–4382 (2012).
CAS PubMed Google Scholar
- Moreau, P., Mary, J. Y. & Attal, M. Bortezomib–thalidomide–dexamethasone versus bortezomib–cyclophosphamide–dexamethasone as induction therapy prior to autologous stem cell transplantation in multiple myeloma. Br. J. Haematol. 168, 605–606 (2015).
CAS PubMed Google Scholar
- Facon, T. et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99–06): a randomised trial. Lancet 370, 1209–1218 (2007).
CAS PubMed Google Scholar
- Palumbo, A. et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet 367, 825–831 (2006).
CAS PubMed Google Scholar
- San Miguel, J. F. et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N. Engl. J. Med. 359, 906–917 (2008).
CAS PubMed Google Scholar
- Benboubker, L. et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N. Engl. J. Med. 371, 906–917 (2014).
CAS PubMed Google Scholar
- Palumbo, A. et al. Personalized therapy in multiple myeloma according to patient age and vulnerability: a report of the European Myeloma Network (EMN). Blood 118, 4519–4529 (2011).
CAS PubMed Google Scholar
- Attal, M. et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais Myelome. N. Engl. J. Med. 335, 91–97 (1996). This is the first randomized trial to demonstrate the importance of ASCT.
CAS PubMed Google Scholar
- Child, J. A. et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N. Engl. J. Med. 348, 1875–1883 (2003).
CAS PubMed Google Scholar
- Palumbo, A. et al. Autologous transplantation and maintenance therapy in multiple myeloma. N. Engl. J. Med. 371, 895–905 (2014).
PubMed Google Scholar
- Attal, M. et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 366, 1782–1791 (2012).
CAS PubMed Google Scholar
- McCarthy, P. L. et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 366, 1770–1781 (2012).
CAS PubMed PubMed Central Google Scholar
- McCarthy, P. L. et al. A meta-analysis of overall survival in patients with multiple myeloma treated with lenalidomide maintenance after high-dose melphalan and autologous stem cell transplant. Haematologica 101, 2–3 (2016).
Google Scholar
- Kumar, A., Kharfan-Dabaja, M. A., Glasmacher, A. & Djulbegovic, B. Tandem versus single autologous hematopoietic cell transplantation for the treatment of multiple myeloma: a systematic review and meta-analysis. J. Natl Cancer Inst. 101, 100–106 (2009).
CAS PubMed Google Scholar
- Sonneveld, P. et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/ GMMG-HD4 trial. J. Clin. Oncol. 30, 2946–2955 (2012).
CAS PubMed Google Scholar
- Kumar, S. et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 17, e328–e346 (2016). This is the current response assessment criteria for multiple myeloma.
PubMed Google Scholar
- Munshi, N. C. et al. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. JAMA Oncol. 3, 28–35 (2017). This is the first large meta-analysis study to confirm the importance of MRD in multiple myeloma.
PubMed PubMed Central Google Scholar
- Palumbo, A. et al. Continuous therapy versus fixed duration of therapy in patients with newly diagnosed multiple myeloma. J. Clin. Oncol. 33, 3459–3466 (2015).
CAS PubMed Google Scholar
- Kumar, S. K. et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter International Myeloma Working Group study. Leukemia 26, 149–157 (2012).
CAS PubMed Google Scholar
- Gonsalves, W. I. et al. Clinical course and outcomes of patients with multiple myeloma who relapse after autologous stem cell therapy. Bone Marrow Transplant. 51, 1156–1158 (2016).
CAS PubMed Google Scholar
- Soutar, R. et al. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Br. J. Haematol. 124, 717–726 (2004).
PubMed Google Scholar
- Kumar, S. et al. Impact of early relapse after auto-SCT for multiple myeloma. Bone Marrow Transplant. 42, 413–420 (2008).
CAS PubMed Google Scholar
- Terpos, E. et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 100, 1254–1266 (2015).
CAS PubMed PubMed Central Google Scholar
- Berenson, J. et al. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: a multicentre, randomised controlled trial. Lancet Oncol. 12, 225–235 (2011).
PubMed Google Scholar
- Leigh, B. R., Kurtts, T. A., Mack, C. F., Matzner, M. B. & Shimm, D. S. Radiation therapy for the palliation of multiple myeloma. Int. J. Radiat. Oncol. Biol. Phys. 25, 801–804 (1993).
CAS PubMed Google Scholar
- Gay, F. & Palumbo, A. Management of disease- and treatment-related complications in patients with multiple myeloma. Med. Oncol. 27 (Suppl. 1), S43–S52 (2010).
CAS PubMed Google Scholar
- Richardson, P. G. et al. Management of treatment-emergent peripheral neuropathy in multiple myeloma. Leukemia 26, 595–608 (2012).
CAS PubMed Google Scholar
- Cella, D., Kallich, J., McDermott, A. & Xu, X. The longitudinal relationship of hemoglobin, fatigue and quality of life in anemic cancer patients: results from five randomized clinical trials. Ann. Oncol. 15, 979–986 (2004).
CAS PubMed Google Scholar
- Snowden, J. A. et al. Guidelines for supportive care in multiple myeloma 2011. Br. J. Haematol. 154, 76–103 (2011).
CAS PubMed Google Scholar
- Nucci, M. & Anaissie, E. Infections in patients with multiple myeloma. Semin. Hematol. 46, 277–288 (2009).
PubMed Google Scholar
- Eda, H., Santo, L., David Roodman, G. & Raje, N. Bone disease in multiple myeloma. Cancer Treat. Res. 169, 251–270 (2016).
CAS PubMed Google Scholar
- Pallis, A. G. et al. EORTC workshop on clinical trial methodology in older individuals with a diagnosis of solid tumors. Ann. Oncol. 22, 1922–1926 (2011).
CAS PubMed Google Scholar
- Stewart, A. K. et al. Health-related quality of life results from the open-label, randomized, phase III ASPIRE trial evaluating carfilzomib, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone in patients with relapsed multiple myeloma. J. Clin. Oncol. 34, 3921–3930 (2016).
CAS PubMed PubMed Central Google Scholar
- Lokhorst, H. M. et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N. Engl. J. Med. 373, 1207–1219 (2015).
CAS PubMed Google Scholar
- Palumbo, A. et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 754–766 (2016).
CAS PubMed Google Scholar
- Dimopoulos, M. A. et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 375, 1319–1331 (2016).
CAS PubMed Google Scholar
- Hu, J., Van Valckenborgh, E., Menu, E., De Bruyne, E. & Vanderkerken, K. Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. Dis. Model. Mech. 5, 763–771 (2012).
CAS PubMed PubMed Central Google Scholar
- Groen, R. W. et al. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 120, e9–e16 (2012).
CAS PubMed Google Scholar
- Chesi, M. et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 120, 376–385 (2012).
CAS PubMed PubMed Central Google Scholar
- Sacco, A. et al. Cancer cell dissemination and homing to the bone marrow in a zebrafish model. Cancer Res. 76, 463–471 (2016).
CAS PubMed Google Scholar
- Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108, 2020–2028 (2006).
CAS PubMed PubMed Central Google Scholar
- Broyl, A. et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 116, 2543–2553 (2010).
CAS PubMed Google Scholar
- Kuiper, R. et al. A gene expression signature for high-risk multiple myeloma. Leukemia 26, 2406–2413 (2012).
CAS PubMed Google Scholar
- Shaughnessy, J. D. Jr et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109, 2276–2284 (2007).
CAS PubMed Google Scholar
- Otto, T. & Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17, 93–115 (2017).
CAS PubMed PubMed Central Google Scholar
- Manier, S. et al. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 14, 100–113 (2017).
CAS PubMed Google Scholar
- Bianchi, G. & Munshi, N. C. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 125, 3049–3058 (2015).
CAS PubMed PubMed Central Google Scholar
- Guillerey, C., Nakamura, K., Vuckovic, S., Hill, G. R. & Smyth, M. J. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cell. Mol. Life Sci. 73, 1569–1589 (2016).
CAS PubMed Google Scholar
- Zannettino, A. C. et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res. 65, 1700–1709 (2005).
CAS PubMed Google Scholar
- Dairaghi, D. J. et al. CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease. Blood 120, 1449–1457 (2012).
CAS PubMed PubMed Central Google Scholar
- Hope, C. et al. TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 123, 3305–3315 (2014).
CAS PubMed PubMed Central Google Scholar
- Hazlehurst, L. A., Damiano, J. S., Buyuksal, I., Pledger, W. J. & Dalton, W. S. Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19, 4319–4327 (2000).
CAS PubMed Google Scholar
- Novak, A. J. et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 103, 689–694 (2004).
CAS PubMed Google Scholar
- Ilcus, C. et al. Immune checkpoint blockade: the role of PD-1–PD-L axis in lymphoid malignancies. Onco Targets Ther. 10, 2349–2363 (2017).
CAS PubMed PubMed Central Google Scholar
- Attal, M. & Harousseau, J. L. Standard therapy versus autologous transplantation in multiple myeloma. Hematol. Oncol. Clin. North Am. 11, 133–146 (1997).
CAS PubMed Google Scholar
- Gertz, M. A. et al. Impact of age and serum creatinine value on outcome after autologous blood stem cell transplantation for patients with multiple myeloma. Bone Marrow Transplant. 39, 605–611 (2007).
CAS PubMed Google Scholar