Missense meanderings in sequence space: a biophysical view of protein evolution (original) (raw)
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983). Book Google Scholar
Blundell, T. L. & Wood, S. P. Is the evolution of insulin Darwinian or due to selectively neutral mutation? Nature257, 197–203 (1975). The authors present the fundamental biochemical argument against the neutral theory of evolution. ArticleCASPubMed Google Scholar
Bazykin, G. A., Kondrashov, F. A., Ogurtsov, A. Y., Sunyaev, S. & Kondrashov, A. S. Positive selection at sites of multiple amino acid replacements since rat–mouse divergence. Nature429, 558–562 (2004). ArticleCASPubMed Google Scholar
Sawyer, S. A., Kulathinal, R. J., Bustamante, C. D. & Hartl, D. L. Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J. Mol. Evol.57 (Suppl. 1), 154–164 (2003). ArticleCAS Google Scholar
Gillespie, J. H. The Causes of Molecular Evolution (Oxford Univ. Press, Oxford, 1991). This is a fantastic discussion of the problems of protein evolution from an eminent population geneticist. Google Scholar
Poon, A. & Chao, L. The rate of compensatory mutation in the DNA bacteriophage ϕX174. Genetics 23 May 2005 (10.1534/genetics.104.039438).
Poon, A., Davis, B. H. & Chao, L. The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood. Genetics 6 May 2005 (10.1534/genetics.104.037259).
Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol.320, 85–95 (2002). This paper describes the role of biochemistry in the evolution of antibiotic resistance genes. ArticleCASPubMed Google Scholar
Kondrashov, A. S., Sunyaev, S. & Kondrashov, F. A. Dobzhansky–Muller incompatibilities in protein evolution. Proc. Natl Acad. Sci. USA99, 14878–14883 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dobson, C. M. Protein folding and misfolding. Nature426, 884–890 (2003). This is an introduction to protein aggregation and disease. ArticleCASPubMed Google Scholar
Beadle, B. M. & Shoichet, B. K. Structural bases of stability–function tradeoffs in enzymes. J. Mol. Biol.321, 285–296 (2002). ArticleCASPubMed Google Scholar
Shoichet, B. K., Baase, W. A., Kuroki, R. & Matthews, B. W. A relationship between protein stability and protein function. Proc. Natl Acad. Sci. USA92, 452–456 (1995). ArticleCASPubMedPubMed Central Google Scholar
Bull, J. J., Badgett, M. R. & Wichman, H. A. Big-benefit mutations in a bacteriophage inhibited with heat. Mol. Biol. Evol.17, 942–950 (2000). ArticleCASPubMed Google Scholar
Wilson, K. P., Malcolm, B. A. & Matthews, B. W. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J. Biol. Chem.267, 10842–10849 (1992). CASPubMed Google Scholar
Mitraki, A., Fane, B., Haase-Pettingell, C., Sturtevant, J. & King, J. Global suppression of protein folding defects and inclusion body formation. Science253, 54–58 (1991). ArticleCASPubMed Google Scholar
Plaxco, K. W., Simons, K. T., Ruczinski, I. & Baker, D. Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochem.39, 11177–11183 (2000). ArticleCAS Google Scholar
van den Berg, B., Ellis, R. J. & Dobson, C. M. Effects of macromolecular crowding on protein folding and aggregation. EMBO J.18, 6927–6933 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pawar, A. P. et al. Prediction of 'aggregation-prone' and 'aggregation-susceptible' regions in proteins associated with neurodegenerative diseases. J. Mol. Biol.350, 379–392 (2005). ArticleCASPubMed Google Scholar
Chiti, F., Stefani, M., Taddei, N., Ramponi, G. & Dobson, C. M. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature424, 805–808 (2003). ArticleCASPubMed Google Scholar
Chiti, F. et al. Kinetic partitioning of protein folding and aggregation. Nature Struct. Biol.9, 137–143 (2002). ArticleCASPubMed Google Scholar
Ramirez-Alvarado, M., Merkel, J. S. & Regan, L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc. Natl Acad. Sci. USA97, 8979–8984 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature416, 507–511 (2002). ArticleCASPubMed Google Scholar
Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science295, 1852–1858 (2002). ArticleCASPubMed Google Scholar
Georgiou, G., Valax, P., Ostermeier, M. & Horowitz, P. M. Folding and aggregation of TEM β-lactamase: analogies with the formation of inclusion bodies in Escherichia coli. Protein Sci.3, 1953–1960 (1994). ArticleCASPubMedPubMed Central Google Scholar
Glickman, M. H. & Ciechanover, A. The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Phys. Rev.82, 373–428 (2002). CAS Google Scholar
Parsell, D. A. & Sauer, R. T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J. Biol. Chem.264, 7590–7595 (1989). CASPubMed Google Scholar
Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature426, 895–899 (2003). The author provides an introduction to protein degradation and disease. ArticleCASPubMed Google Scholar
Gregersen, N., Bross, P., Jorgensen, M. M., Corydon, T. J. & Andresen, B. S. Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders. J. Inherit. Metab. Dis.23, 441–447 (2000). ArticleCASPubMed Google Scholar
Pakula, A. A. & Sauer, R. T. Genetic analysis of protein stability and function. Annu. Rev. Genet.23, 289–310 (1989). This is an excellent review of mutational effects on protein stability. ArticleCASPubMed Google Scholar
Fields, P. A. Review: Protein function at thermal extremes: balancing stability and flexibility. Comp. Biochem. Physiol. A129, 417–431 (2001). ArticleCAS Google Scholar
Daniel, R. M., Dunn, R. V., Finney, J. L. & Smith, J. C. The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct.32, 69–92 (2003). ArticleCASPubMed Google Scholar
Somero, G. N. Proteins and temperature. Annu. Rev. Physio.57, 43–68 (1995). This paper describes the adaptation of proteins to environmental temperature. ArticleCAS Google Scholar
Ferrer, M., Chernikova, T. N., Yakimov, M. M., Golyshin, P. N. & Timmis, K. N. Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnol.21, 1266–1267 (2003). ArticleCAS Google Scholar
Daopin, S., Alber, T., Baase, W. A., Wozniak, J. A. & Matthews, B. W. Structural and thermodynamic analysis of the packing of two α-helices in bacteriophage T4 lysozyme. J. Mol. Biol.221, 647–667 (1991). ArticleCASPubMed Google Scholar
Green, S. M. & Shortle, D. Patterns of nonadditivity between pairs of stability mutations in staphylococcal nuclease. Biochem.32, 10131–10139 (1993). ArticleCAS Google Scholar
Matthews, B. W. Studies on protein stability with T4 lysozyme. Adv. Protein Chem.46, 249–278 (1995). ArticleCASPubMed Google Scholar
Milla, M. E., Brown, B. M. & Sauer, R. T. Protein stability effects of a complete set of alanine substitutions in Arc repressor. Nature Struct. Biol.1, 518–523 (1994). ArticleCASPubMed Google Scholar
Pakula, A. A. & Sauer, R. T. Amino acid substitutions that increase the thermal stability of the λCro protein. Proteins5, 202–210 (1989). ArticleCASPubMed Google Scholar
Shortle, D. Probing the determinants of protein folding and stability with amino acid substitutions. J. Biol. Chem.264, 5315–5318 (1989). CASPubMed Google Scholar
Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol.320, 369–387 (2002). ArticleCASPubMed Google Scholar
Fersht, A. R., Matouschek, A. & Serrano, L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol.224, 771–782 (1992). ArticleCASPubMed Google Scholar
Schultz, S. C. & Richards, J. H. Site-saturation studies of β-lactamase: production and characterization of mutant β-lactamases with all possible amino acid substitutions at residue 71. Proc. Natl Acad. Sci. USA83, 1588–1592 (1986). ArticleCASPubMedPubMed Central Google Scholar
Pakula, A. A., Young, V. B. & Sauer, R. T. Bacteriophage λ_cro_ mutations: effects on activity and intracellular degradation. Proc. Natl Acad. Sci. USA83, 8829–8833 (1986). ArticleCASPubMedPubMed Central Google Scholar
Rosen, R. et al. Protein aggregation in Escherichia coli: role of proteases. FEMS Microbiol. Lett.207, 9–12 (2002). ArticleCASPubMed Google Scholar
Calloni, G., Zoffoli, S., Stefani, M., Dobson, C. M. & Chiti, F. Investigating the effects of mutations on protein aggregation in the cell. J. Biol. Chem.280, 10607–10613 (2005). ArticleCASPubMed Google Scholar
Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnol.22, 1302–1306 (2004). ArticleCAS Google Scholar
Broome, B. M. & Hecht, M. H. Nature disfavors sequences of alternating polar and non-polar amino acids: implications for amyloidogenesis. J. Mol. Biol.296, 961–968 (2000). ArticleCASPubMed Google Scholar
Ventura, S. et al. Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc. Natl Acad. Sci. USA.101, 7258–7263 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zavodszky, P., Kardos, J., Svingor, A. & Petsko, G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl Acad. Sci. USA95, 7406–7411 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fersht, A. R. Structure and Mechanism in Protein Science: a Guide to Enzyme Catalysis and Protein Folding (W. H. Freeman, New York, 1999). Google Scholar
Perl, D., Mueller, U., Heinemann, U. & Schmid, F. X. Two exposed amino acid residues confer thermostability on a cold shock protein. Nature Struct. Biol.7, 380–383 (2000). This article demonstrates the stabilizing effect of mutations during thermoadaptation. ArticleCASPubMed Google Scholar
Perl, D. & Schmid, F. X. Some like it hot: the molecular determinants of protein thermostability. Chembiochem3, 39–44 (2002). ArticleCASPubMed Google Scholar
Wagner, G. P. & Gabriel, W. Quantitative variation in finite parthenogenetic populations: what stops Muller's ratchet in the absence of recombination? Evolution44, 715–731 (1990). ArticlePubMed Google Scholar
Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond. B264, 1287–1291 (1997). ArticleCAS Google Scholar
Maisnier-Patin, S., Berg, O. G., Liljas, L. & Andersson, D. I. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol.46, 355–366 (2002). This paper describes the fitness costs of streptomycin resistance and the compensatory mutations that are involved. ArticleCASPubMed Google Scholar
Poteete, A. R., Rennell, D., Bouvier, S. E. & Hardy, L. W. Alteration of T4 lysozyme structure by second-site reversion of deleterious mutations. Protein Sci.6, 2418–2425 (1997). ArticleCASPubMedPubMed Central Google Scholar
Shortle, D. & Lin, B. Genetic analysis of staphylococcal nuclease: identification of three intragenic 'global' suppressors of nuclease-minus mutations. Genetics110, 539–555 (1985). CASPubMedPubMed Central Google Scholar
Mitraki, A., Danner, M., King, J. & Seckler, R. Temperature-sensitive mutations and second-site suppressor substitutions affect folding of the P22 tailspike protein in vitro. J. Biol. Chem.268, 20071–20075 (1993). CASPubMed Google Scholar
Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics154, 985–997 (2000). CASPubMedPubMed Central Google Scholar
Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol.40, 433–439 (2001). ArticleCASPubMed Google Scholar
Bjorkman, J., Hughes, D. & Andersson, D. I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl Acad. Sci. USA95, 3949–3953 (1998). ArticleCASPubMedPubMed Central Google Scholar
Burch, C. L. & Chao, L. Evolution by small steps and rugged landscapes in the RNA virus φ6. Genetics151, 921–927 (1999). CASPubMedPubMed Central Google Scholar
Kulathinal, R. J., Bettencourt, B. R. & Hartl, D. L. Compensated deleterious mutations in insect genomes. Science306, 1553–1554 (2004). ArticleCASPubMed Google Scholar
Sideraki, V., Huang, W., Palzkill, T. & Gilbert, H. F. A secondary drug resistance mutation of TEM-1 β-lactamase that suppresses misfolding and aggregation. Proc. Natl Acad. Sci. USA98, 283–288 (2001). CASPubMed Google Scholar
Mateu, M. G. & Fersht, A. R. Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc. Natl Acad. Sci. USA96, 3595–3599 (1999). ArticleCASPubMedPubMed Central Google Scholar
Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol.2, 489–493 (1999). ArticleCASPubMed Google Scholar
Borman, A. M., Paulous, S. & Clavel, F. Resistance of human immunodeficiency virus type 1 to protease inhibitors: selection of resistance mutations in the presence and absence of the drug. J. Gen. Virol.77, 419–426 (1996). ArticleCASPubMed Google Scholar
Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nature Rev. Genet.4, 263–274 (2003). ArticleCASPubMed Google Scholar
Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays26, 348–362 (2004). ArticleCASPubMed Google Scholar
Weinreich, D. M., Watson, R. A. & Chao, L. Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution59, 1165–1174 (2005). CASPubMed Google Scholar
Bastolla, U., Roman, H. E. & Vendruscolo, M. Neutral evolution of model proteins: diffusion in sequence space and overdispersion. J. Theor. Biol.200, 49–64 (1999). ArticleCASPubMed Google Scholar
Wright, S. in Proc. 6th Int. Congr. Genet. (ed. Jones, D. F.) 356–366 (Brooklyn Botanic Garden, Menasha, Wisconsin, 1932). Google Scholar
Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins, a Symposium (eds Bryson, V. & Vogel, H.) 97–166 (Academic Press, New York, 1965). Book Google Scholar
Wilson, A. C., Carlson, S. S. & White, T. J. Biochemical evolution. Annu. Rev. Biochem.46, 573–639 (1977). ArticleCASPubMed Google Scholar
Ohta, T. & Kimura, M. On the constancy of the evolutionary rate of cistrons. J. Mol. Evol.1, 18–25 (1971). ArticleCAS Google Scholar
Langley, C. H. & Fitch, W. M. An examination of the constancy of the rate of molecular evolution. J. Mol. Evol.3, 162–177 (1974). Article Google Scholar
Gillespie, J. H. Molecular evolution over the mutational landscape. Evolution38, 1116–1129 (1984). This is the first rigorous treatment of sequence evolution through complex fitness landscapes. ArticleCASPubMed Google Scholar
McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature351, 652–654 (1991). ArticleCASPubMed Google Scholar
Smith, N. G. & Eyre-Walker, A. Adaptive protein evolution in Drosophila. Nature415, 1022–1024 (2002). ArticleCASPubMed Google Scholar
Orr, A. H. The genetic theory of adaptation: a brief history. Nature Rev. Genet.6, 119–127 (2005). ArticleCASPubMed Google Scholar
Hartl, D. L., Dykhuizen, D. E. & Dean, A. M. Limits of adaptation: the evolution of selective neutrality. Genetics111, 655–674 (1985). CASPubMedPubMed Central Google Scholar
Maynard Smith, J. Natural selection and the concept of a protein space. Nature225, 563–565 (1974). Article Google Scholar
Kimura, M. The role of compensatory neutral mutations in molecular evolution. J. Genet.64, 7–19 (1985). ArticleCAS Google Scholar
Carter, A. J. R. & Wagner, G. P. Evolution of functionally conserved enhancers can be accelerated in large populations: a population-genetic model. Proc. R. Soc. Lond. B269, 953–960 (2002). Article Google Scholar
Weinreich, D. M. & Chao, L. Rapid evolutionary escape by large populations from local fitness peaks is likely in nature. Evolution59, 1175–1182 (2005). ArticleCASPubMed Google Scholar
Bross, P. et al. Protein misfolding and degradation in genetic diseases. Human Mut.14, 186–198 (1999). ArticleCAS Google Scholar
Pedersen, C. B. et al. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency. J. Biol. Chem.278, 47449–47458 (2003). ArticleCASPubMed Google Scholar
Haass, C. & Steiner, H. Alzheimer disease γ-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol.12, 556–562 (2002). ArticleCASPubMed Google Scholar
Aguzzi, A. & Haass, C. Games played by rogue proteins in prion disorders and Alzheimer's disease. Science302, 814–818 (2003). ArticleCASPubMed Google Scholar
Sherman, M. Y. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron29, 15–32 (2001). ArticleCASPubMed Google Scholar
Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A. L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell14, 95–104 (2004). ArticleCASPubMed Google Scholar
Eaton, W. A. & Hofrichter, J. Sickle cell hemoglobin polymerization. Adv. Protein Chem.40, 63–279 (1990). ArticleCASPubMed Google Scholar