International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004).
Przeworski, M., Hudson, R. R. & Di Rienzo, A. Adjusting the focus on human variation. Trends Genet.16, 296–302 (2000). ArticleCASPubMed Google Scholar
Reich, D. E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature Genet.32, 135–142 (2002). ArticleCASPubMed Google Scholar
Jacobs, P. A., Baikie, A. G., Court Brown, W. M. & Strong, J. A. The somatic chromosomes in mongolism. Lancet1, 710 (1959). ArticleCASPubMed Google Scholar
Edwards, J. H., Harnden, D. G., Cameron, A. H., Crosse, V. M. & Wolff, O. H. A new trisomic syndrome. Lancet1, 787–790 (1960). ArticleCASPubMed Google Scholar
Patau, K., Smith, D. W., Therman, E., Inhorn, S. L. & Wagner, H. P. Multiple congenital anomaly caused by an extra autosome. Lancet1, 790–793 (1960). ArticleCASPubMed Google Scholar
Bobrow, M., Joness, L. F. & Clarke, G. A complex chromosomal rearrangement with formation of a ring 4. J. Med. Genet.8, 235–239 (1971). ArticleCASPubMedPubMed Central Google Scholar
Jacobs, P. A., Matsuura, J. S., Mayer, M. & Newlands, I. M. A cytogenetic survey of an institution for the mentally retarded: I. Chromosome abnormalities. Clin. Genet.13, 37–60 (1978). ArticleCASPubMed Google Scholar
Coco, R. & Penchaszadeh, V. B. Cytogenetic findings in 200 children with mental retardation and multiple congenital anomalies of unknown cause. Am. J. Med. Genet.12, 155–173 (1982). ArticleCASPubMed Google Scholar
Warburton, D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet.49, 995–1013 (1991). A comprehensive survey that describes the prevalence of microscopic structural variants and their relevance to clinical diagnostics. CASPubMedPubMed Central Google Scholar
Jacobs, P. A., Browne, C., Gregson, N., Joyce, C. & White, H. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J. Med. Genet.29, 103–108 (1992). A landmark study of the frequency of chromosomal abnormalities that affect newborns. ArticleCASPubMedPubMed Central Google Scholar
Kim, S. S., Jung, S. C., Kim, H. J., Moon, H. R. & Lee, J. S. Chromosome abnormalities in a referred population for suspected chromosomal aberrations: a report of 4117 cases. J. Korean Med. Sci.14, 373–376 (1999). ArticleCASPubMedPubMed Central Google Scholar
Benyush, V. A., Luckash, V. G. & Shtannikov, A. V. Quantitative analysis of C-bands based on optical density profiles in human chromosomes. Hum. Genet.39, 169–175 (1977). ArticleCASPubMed Google Scholar
Maegenis, R. E., Donlon, T. A. & Wyandt, H. E. Giemsa-11 staining of chromosome 1: a newly described heteromorphism. Science202, 64–65 (1978). ArticleCASPubMed Google Scholar
Verma, R. S., Rodriguez, J. & Dosik, H. The clinical significance of pericentric inversion of the human Y chromosome: a rare 'third' type of heteromorphism. J. Hered.73, 236–238 (1982). ArticleCASPubMed Google Scholar
Hsu, L. Y., Benn, P. A., Tannenbaum, H. L., Perlis, T. E. & Carlson, A. D. Chromosomal polymorphisms of 1, 9, 16, and Y in 4 major ethnic groups: a large prenatal study. Am. J. Med. Genet.26, 95–101 (1987). ArticleCASPubMed Google Scholar
Verma, R. S., Dosik, H. & Lubs, H. A. Size and pericentric inversion heteromorphisms of secondary constriction regions (h) of chromosomes 1, 9, and 16 as detected by CBG technique in Caucasians: classification, frequencies, and incidence. Am. J. Med. Genet.2, 331–339 (1978). ArticleCASPubMed Google Scholar
Wright, A. F. in Nature Encyclopedia of the Human Genome 2 959–968 (Nature Publishing Group, London, 2003). Google Scholar
Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet.27, 234–236 (2001). ArticleCASPubMed Google Scholar
Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science307, 1072–1079 (2005). ArticleCASPubMed Google Scholar
The International HapMap Consortium. A haplotype map of the human genome. Nature437, 1299–1320 (2005).
Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer20, 399–407 (1997). ArticleCASPubMed Google Scholar
Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science305, 525–528 (2004). This and reference 27 were the first papers to describe the global presence and distribution of CNVs in the human genome. ArticleCASPubMed Google Scholar
Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature Genet.36, 949–951 (2004). ArticleCASPubMed Google Scholar
Tuzun, E. et al. Fine-scale structural variation of the human genome. Nature Genet37, 727–732 (2005). The first description of a clone-end sequencing strategy to discover mainly intermediate-sized structural variants in the human genome. ArticleCASPubMed Google Scholar
Feuk, L. et al. Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS Genet.1, e56 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Dhami, P. et al. Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am. J. Hum. Genet.76, 750–762 (2005). ArticleCASPubMedPubMed Central Google Scholar
Stefansson, H. et al. A common inversion under selection in Europeans. Nature Genet.37, 129–137 (2005). This reports the discovery and characterization of a 900-kb inversion polymorphism on chromosome 17. This variant was found to be under positive selection in Europeans, as determined by population-based screening. ArticleCASPubMed Google Scholar
Visser, R. et al. Identification of a 3.0-kb major recombination hotspot in patients with sotos syndrome who carry a common 1.9-Mb microdeletion. Am. J. Hum. Genet.76, 52–67 (2005). ArticleCASPubMed Google Scholar
Inoue, K. & Lupski, J. R. Molecular mechanisms for genomic disorders. Annu. Rev. Genomics Hum. Genet.3, 199–242 (2002). An outstanding review of the mechanisms behind genomic disorders, including their association with segmental duplications, and non-allelic homologous recombination. ArticleCASPubMed Google Scholar
Gripenberg, U. Size variation and orientation of the human Y chromosome. Chromosoma15, 618–629 (1964). ArticleCASPubMed Google Scholar
Nielsen, J. & Sillesen, I. Incidence of chromosome aberrations among 11148 newborn children. Humangenetik30, 1–12 (1975). ArticleCASPubMed Google Scholar
Nussbaum, R. L., McInnes, R. R. & Willard, H. F. Thompson & Thompson Genetics in Medicine (W.B. Saunders, 2004). Google Scholar
McKinlay Gardner, R. J. & Sutherland, G. R. Chromosome Abnormalities and Genetic Counseling (Oxford Univ. Press, USA, 2003). Google Scholar
Barber, J. C. et al. Duplication of 8p23.1: a cytogenetic anomaly with no established clinical significance. J. Med. Genet.35, 491–496 (1998). ArticleCASPubMedPubMed Central Google Scholar
Babu, A. & Verma, R. S. Heteromorphic variants of human chromosome 4. Cytogenet. Cell Genet.41, 60–61 (1986). ArticleCASPubMed Google Scholar
Verma, R. S. Heterochromatin: Molecular and Structural Aspects (Cambridge Univ. Press, New York, 1988). Google Scholar
Starke, H. et al. Homologous sequences at human chromosome 9 bands p12 and q13–21.1 are involved in different patterns of pericentric rearrangements. Eur. J. Hum. Genet.10, 790–800 (2002). ArticleCASPubMed Google Scholar
Wyandt, H. E. & Tonk, V. S. Atlas of Human Chromosome Heteromorphisms (Kluwer Academic, Netherlands, 2004). Book Google Scholar
Speicher, M. R. & Carter, N. P. The new cytogenetics: blurring the boundaries with molecular biology. Nature Rev. Genet.6, 782–792 (2005). ArticleCASPubMed Google Scholar
Locke, D. P. et al. BAC microarray analysis of 15q11–q13 rearrangements and the impact of segmental duplications. J. Med. Genet.41, 175–182 (2004). ArticleCASPubMedPubMed Central Google Scholar
Vissers, L. E., Veltman, J. A., van Kessel, A. G. & Brunner, H. G. Identification of disease genes by whole genome CGH arrays. Hum. Mol. Genet.14 (Suppl. 2), R215–R223 (2005). ArticleCASPubMed Google Scholar
Mantripragada, K. K. et al. DNA copy-number analysis of the 22q11 deletion-syndrome region using array-CGH with genomic and PCR-based targets. Int. J. Mol. Med.13, 273–279 (2004). CASPubMed Google Scholar
Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res.13, 2291–2305 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet.23, 41–46 (1999). ArticleCASPubMed Google Scholar
Barrett, M. T. et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl Acad. Sci. USA101, 17765–17770 (2004). ArticleCASPubMedPubMed Central Google Scholar
Brennan, C. et al. High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res.64, 4744–4748 (2004). ArticleCASPubMed Google Scholar
Zhao, X. et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res.64, 3060–3071 (2004). ArticleCASPubMed Google Scholar
Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res.6, 986–994 (1996). ArticleCASPubMed Google Scholar
Bieche, I. et al. Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer. Int. J. Cancer78, 661–666 (1998). ArticleCASPubMed Google Scholar
Charbonnier, F. et al. Detection of exon deletions and duplications of the mismatch repair genes in hereditary nonpolyposis colorectal cancer families using multiplex polymerase chain reaction of short fluorescent fragments. Cancer Res.60, 2760–2763 (2000). CASPubMed Google Scholar
Armour, J. A., Sismani, C., Patsalis, P. C. & Cross, G. Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res.28, 605–609 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hollox, E. J., Akrami, S. M. & Armour, J. A. DNA copy number analysis by MAPH: molecular diagnostic applications. Expert Rev. Mol. Diagn.2, 370–378 (2002). ArticleCASPubMed Google Scholar
Schouten, J. P. et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res.30, e57 (2002). ArticlePubMedPubMed Central Google Scholar
White, S. J. et al. Two-color multiplex ligation-dependent probe amplification: detecting genomic rearrangements in hereditary multiple exostoses. Hum. Mutat.24, 86–92 (2004). ArticleCASPubMed Google Scholar
Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genet.20, 207–211 (1998). ArticleCASPubMed Google Scholar
Kennedy, G. C. et al. Large-scale genotyping of complex DNA. Nature Biotechnol.21, 1233–1237 (2003). ArticleCAS Google Scholar
Slater, S. R. et al. High-resolution identification of chromosomal abnormalities using oligonucleotide arrays containing 116,204 SNPs. Am. J. Hum. Genet.77, 709–726 (2005). ArticleCASPubMedPubMed Central Google Scholar
Huang, J. et al. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum. Genomics1, 287–299 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnol.18, 1001–1005 (2000). ArticleCAS Google Scholar
Mei, R. et al. Genome-wide detection of allelic imbalance using human SNPs and high-density DNA arrays. Genome Res.10, 1126–1137 (2000). ArticleCASPubMed Google Scholar
Altug-Teber, O. et al. A rapid microarray based whole genome analysis for detection of uniparental disomy. Hum. Mutat.26, 153–159 (2005). ArticleCASPubMed Google Scholar
Raghavan, M. et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res.65, 375–378 (2005). CASPubMed Google Scholar
Ponchel, F. et al. Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions. BMC Biotechnol3, 18 (2003). ArticlePubMedPubMed Central Google Scholar
Fredman, D. et al. Complex SNP-related sequence variation in segmental genome duplications. Nature Genet.36, 861–866 (2004). ArticleCASPubMed Google Scholar
Estivill, X. et al. Chromosomal regions containing high-density and ambiguously mapped putative single nucleotide polymorphisms (SNPs) correlate with segmental duplications in the human genome. Hum. Mol. Genet.11, 1987–1995 (2002). ArticleCASPubMed Google Scholar
Istrail, S. et al. Whole-genome shotgun assembly and comparison of human genome assemblies. Proc. Natl Acad. Sci. USA101, 1916–1921 (2004). ArticleCASPubMedPubMed Central Google Scholar
Scherer, S. W. & Green, E. D. Human chromosome 7 circa 2004: a model for structural and functional studies of the human genome. Hum. Mol. Genet.13 (Spec. No. 2), R303–R313 (2004). ArticleCASPubMed Google Scholar
Beck, S. & Trowsdale, J. The human major histocompatability complex: lessons from the DNA sequence. Annu. Rev. Genomics Hum. Genet.1, 117–137 (2000). ArticleCASPubMed Google Scholar
Bailey, J. A. et al. Recent segmental duplications in the human genome. Science297, 1003–1007 (2002). The first global map of segmental duplications in the human genome, including an analysis of their relationship to genes and genetic diseases. ArticleCASPubMed Google Scholar
An International System for Human Cytogenetic Nomenclature ISCN 1985. Report of the Standing Committee on Human Cytogenetic Nomenclature. Birth Defects Orig. Artic. Ser.21, 1–117 (1985).
Shaw-Smith, C. et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J. Med. Genet.41, 241–248 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cheung, J. et al. Genome-wide detection of segmental duplications and potential assembly errors in the human genome sequence. Genome Biol.4, R25 (2003). ArticlePubMedPubMed Central Google Scholar
Eichler, E. E., Clark, R. A. & She, X. An assessment of the sequence gaps: unfinished business in a finished human genome. Nature Rev. Genet.5, 345–354 (2004). ArticleCASPubMed Google Scholar
Robledo, R. et al. A 9.1-kb gap in the genome reference map is shown to be a stable deletion/insertion polymorphism of ancestral origin. Genomics80, 585–592 (2002). ArticleCASPubMed Google Scholar
Ghanem, N. et al. Polymorphism of MHC class III genes: definition of restriction fragment linkage groups and evidence for frequent deletions and duplications. Hum. Genet.79, 209–218 (1988). ArticleCASPubMed Google Scholar
Groot, P. C., Mager, W. H. & Frants, R. R. Interpretation of polymorphic DNA patterns in the human α-amylase multigene family. Genomics10, 779–785 (1991). ArticleCASPubMed Google Scholar
Buckland, P. R. Polymorphically duplicated genes: their relevance to phenotypic variation in humans. Ann. Med.35, 308–315 (2003). ArticleCASPubMed Google Scholar
Hollox, E. J., Armour, J. A. & Barber, J. C. Extensive normal copy number variation of a β-defensin antimicrobial-gene cluster. Am. J. Hum. Genet.73, 591–600 (2003). ArticleCASPubMedPubMed Central Google Scholar
Knight, S. J. & Flint, J. Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J. Med. Genet.37, 401–409 (2000). ArticleCASPubMedPubMed Central Google Scholar
Barber, J. C. et al. Duplications and copy number variants of 8p23.1 are cytogenetically indistinguishable but distinct at the molecular level. Eur. J. Hum. Genet.13, 1131–1136 (2005). ArticleCASPubMed Google Scholar
Lakich, D., Kazazian, H. H. Jr, Antonarakis, S. E. & Gitschier, J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nature Genet.5, 236–41 (1993). ArticleCASPubMed Google Scholar
Bondeson, M. L. et al. Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum. Mol. Genet.4, 615–621 (1995). ArticleCASPubMed Google Scholar
Small, K., Iber, J. & Warren, S. T. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nature Genet.16, 96–99 (1997). ArticleCASPubMed Google Scholar
Osborne, L. R. et al. A 1.5 million-base pair inversion polymorphism in families with Williams–Beuren syndrome. Nature Genet.29, 321–5 (2001). A study of structural variants at the Williams–Beuren locus, describing a 1.5-Mb polymorphic micro-inversion that predisposes to subsequent disease-causing deletions. ArticleCASPubMed Google Scholar
Gimelli, G. et al. Genomic inversions of human chromosome 15q11–q13 in mothers of Angelman syndrome patients with class II (BP2/3) deletions. Hum. Mol. Genet.12, 849–858 (2003). ArticleCASPubMed Google Scholar
Kurotaki, N. et al. Fifty microdeletions among 112 cases of Sotos syndrome: low copy repeats possibly mediate the common deletion. Hum. Mutat.22, 378–387 (2003). ArticleCASPubMed Google Scholar
Giglio, S. et al. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am. J. Hum. Genet.68, 874–883 (2001). ArticleCASPubMedPubMed Central Google Scholar
Giglio, S. et al. Heterozygous submicroscopic inversions involving olfactory receptor-gene clusters mediate the recurrent t(4;8)(p16;p23) translocation. Am. J. Hum. Genet.71, 276–285 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nobrega, M. A., Zhu, Y., Plajzer-Frick, I., Afzal, V. & Rubin, E. M. Megabase deletions of gene deserts result in viable mice. Nature431, 988–993 (2004). ArticleCASPubMed Google Scholar
Ravnan, J. B. et al. Subtelomere FISH analysis of 11,688 cases: An evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J. Med. Genet. 30 September 2005 (10.1136/jmg.2005.036350).
Yu, C. E. et al. Presence of large deletions in kindreds with autism. Am. J. Hum. Genet.71, 100–115 (2002). A thorough analysis of microsatellite markers behaving in a non-Mendelian manner in autism kindreds, which led to the discovery of novel microdeletions. ArticleCASPubMedPubMed Central Google Scholar
Gribble, S. M. et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J. Med. Genet.42, 8–16 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez, E. et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science307, 1434–1440 (2005). ArticleCASPubMed Google Scholar
Initial sequence of the chimpanzee genome and comparison with the human genome. Nature437, 69–87 (2005).
Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature437, 88–93 (2005). ArticleCASPubMed Google Scholar
Aston, C., Mishra, B. & Schwartz, D. C. Optical mapping and its potential for large-scale sequencing projects. Trends Biotechnol.17, 297–302 (1999). ArticleCASPubMed Google Scholar
Hinds, D. A., Kloek, A. P., Jen, M., Chen, X. & Frazer, K. A. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nature Genet.38, 82–85 (2006). ArticleCASPubMed Google Scholar
Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E. & Pritchard, J. K. A high-resolution survey of deletion polymorphism in the human genome. Nature Genet.38, 75–81 (2006). ArticleCASPubMed Google Scholar
McCarroll, S. A. et al. Common deletion polymorphisms in the human genome. Nature. Genet.38, 86–92 (2006). ArticleCASPubMed Google Scholar
Le Caignec, C. et al. Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J. Med. Genet.42, 121–128 (2005). ArticleCASPubMedPubMed Central Google Scholar
Jobanputra, V. et al. Application of ROMA (representational oligonucleotide microarray analysis) to patients with cytogenetic rearrangements. Genet. Med.7, 111–118 (2005). ArticleCASPubMed Google Scholar
Bejjani, B. A. et al. Use of targeted array-based CGH for the clinical diagnosis of chromosomal imbalance: is less more? Am. J. Med. Genet. A134, 259–267 (2005). ArticlePubMed Google Scholar
van Ommen, G. J. Frequency of new copy number variation in humans. Nature Genet.37, 333–334 (2005). ArticleCASPubMed Google Scholar