The new cytogenetics: blurring the boundaries with molecular biology (original) (raw)
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004).
BAC Consortium. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature409, 953–958 (2001).
Telenius, H. et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer4, 257–263 (1992). ArticleCASPubMed Google Scholar
Cram, L. S., Gray, J. W. & Carter, N. P. Cytometry and genetics. Cytometry A58, 33–36 (2004). ArticlePubMed Google Scholar
Meltzer, P. S., Guan, X. Y., Burgess, A. & Trent, J. Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet.1, 24–28 (1992). ArticleCASPubMed Google Scholar
Carter, N. P. et al. Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J. Med. Genet.29, 299–307 (1992). ArticleCASPubMedPubMed Central Google Scholar
Nederlof, P. M. et al. Three color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry10, 20–27 (1989). ArticleCASPubMed Google Scholar
Nederlof, P. M., van der Flier, S., Vrolijk, J., Tanke, H. J. & Raap, A. K. Fluorescence ratio measurements of double labeled probes for multiple in situ hybridization by digital imaging microscopy. Cytometry13, 839–845 (1992). ArticleCASPubMed Google Scholar
Speicher, M. R., Ballard, S. G. & Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet.12, 368–375 (1996). ArticleCASPubMed Google Scholar
Schröck, E. et al. Multicolor spectral karyotyping of human chromosomes. Science273, 494–497 (1996). References 9 and 10 describe the first 24-colour hybridizations for a FISH-based classification of all human chromosomes. ArticlePubMed Google Scholar
Tanke, H. J. et al. New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur. J. Hum. Genet.7, 2–11 (1999). ArticleCASPubMed Google Scholar
Fauth, C. & Speicher, M. R. Classifying by colors: FISH-based genome analysis. Cytogenet. Cell Genet.93, 1–10 (2001). ArticleCASPubMed Google Scholar
Azofeifa, J. et al. An optimized probe set for the detection of small interchromosomal aberrations by 24-color FISH. Am. J. Hum. Genet.66, 1684–1688 (2000). ArticleCASPubMedPubMed Central Google Scholar
Brown, J. et al. Subtelomeric chromosome rearrangements are detected using an innovative 12-colour FISH assay (M-TEL). Nature Med.7, 497–501 (2001). ArticleCASPubMed Google Scholar
Fauth, C. et al. A new strategy for the detection of subtelomeric rearrangements. Hum. Genet.109, 576–583 (2001). ArticleCASPubMed Google Scholar
Müller, S., O'Brien, P. C., Ferguson-Smith, M. A. & Wienberg, J. Cross-species colour segmenting: a novel tool in human karyotype analysis. Cytometry33, 445–452 (1998). ArticlePubMed Google Scholar
Chudoba, I. et al. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet. Cell Genet.84, 156–160 (1999). ArticleCASPubMed Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature Genet.36, 331–334 (2004). ArticleCASPubMed Google Scholar
Kallioniemi, A. et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science258, 818–821 (1992). This is the first use of comparative genomic hybridization to map genomic imbalances, a method that is now extensively used for clinical and research applications. ArticleCASPubMed Google Scholar
du Manoir, S. et al. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum. Genet.90, 590–610 (1993). ArticleCASPubMed Google Scholar
Speicher, M. R. et al. Molecular cytogenetic analysis of archived, paraffin embedded solid tumors by comparative genomic hybridization after universal PCR. Hum. Mol. Genet.2, 1907–1914 (1993). ArticleCASPubMed Google Scholar
Speicher, M. R. et al. Correlation of microscopic phenotype with genotype in a formalin fixed, paraffin embedded testicular germ cell tumor using universal DNA amplification, comparative genomic hybridization and interphase cytogenetics. Am. J. Pathol.146, 1332–1340 (1995). CASPubMedPubMed Central Google Scholar
Wiltshire, R. N. et al. Direct visualization of the clonal progression of primary cutaneous melanoma: application of tissue microdissection and comparative genomic hybridization. Cancer Res.55, 3954–3957 (1995). CASPubMed Google Scholar
Klein, C. A. et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc. Natl Acad. Sci. USA96, 4494–4499 (1999). ArticleCASPubMed Google Scholar
Wells, D., Sherlock, J. K., Handyside, A. H. & Delhanty, J. D. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridization. Nucleic Acids Res.27, 1214–1218 (1999). ArticleCASPubMedPubMed Central Google Scholar
Voullaire, L., Wilton, L., Slater, H. & Williamson, R. Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat. Diagnosis19, 846–851 (1999). References 24–26 were the first demonstrations that an unbiased amplification of the genome of a single cell for subsequent CGH analysis is possible. ArticleCAS Google Scholar
Wilton, L., Williamson, R., McBain, J., Edgar, D. & Voullaire, L. Birth of a healthy infant after preimplantation confirmation of euploidy by comparative genomic hybridization. New Eng. J. Med.345, 1537–1541 (2001). ArticleCASPubMed Google Scholar
Wells, D. et al. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy. Fertil. Steril.78, 543–549 (2002). ArticlePubMed Google Scholar
Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA100, 7737–7742 (2003). ArticleCASPubMed Google Scholar
Gangnus, R., Langer, S., Breit, S., Pantel, K. & Speicher, M. R. Genomic profiling of viable and proliferative micrometastatic cells from early stage breast cancer patients. Clin. Cancer Res.10, 3457–3464 (2004). ArticleCASPubMed Google Scholar
Langer, S., Geigl, J. B., Gangnus, R. & Speicher, M. R. Sequential application of interphase-FISH and CGH to single cells. Lab. Invest.85, 582–592 (2005). ArticleCASPubMed Google Scholar
van den Engh, G., Sachs, R. & Trask, B. J. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. Science257, 1410–1412 (1992). ArticleCASPubMed Google Scholar
Trask, B. J. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet.7, 149–154 (1991). ArticleCASPubMed Google Scholar
Tkachuk, D. et al. Detection of bcr – abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science250, 559–562 (1990). ArticleCASPubMed Google Scholar
Arnoldus, E. P. et al. Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet. Cell Genet.54, 108–111 (1990). ArticleCASPubMed Google Scholar
Hicks, D. G. & Tubbs, R. R. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum. Pathol.36, 250–261 (2005). ArticleCASPubMed Google Scholar
Chin, K. et al. In situ analyses of genome instability in breast cancer. Nature Genet.36, 984–988 (2004). An impressive example of the use of FISH on tissue sections to investigate the first steps of tumorigenesis. ArticleCASPubMed Google Scholar
Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer4, 448–456 (2004). ArticleCAS Google Scholar
Solakoglu, O. et al. Heterogeneous proliferative potential of occult metastatic cells in bone marrow of patients with solid epithelial tumors. Proc. Natl Acad. Sci. USA99, 2246–2251 (2002). ArticleCASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature386, 623–627 (1997). ArticleCASPubMed Google Scholar
Heng, H. H., Squire, J. & Tsui, L. C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl Acad. Sci. USA89, 9509–9513 (1992). ArticleCASPubMed Google Scholar
Parra, I. & Windle, B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nature Genet.5, 17–21 (1993). ArticleCASPubMed Google Scholar
Fidlerova, H., Senger, G., Kost, M., Sanseau, P. & Sheer, D. Two simple procedures for releasing chromatin from routinely fixed cells for fluorescence in situ hybridization. Cytogenet. Cell Genet.65, 203–205 (1994). ArticleCASPubMed Google Scholar
Bensimon, A. et al. Alignment and sensitive detection of DNA by a moving interface. Science265, 2096–2098 (1994). ArticleCASPubMed Google Scholar
Florijn, R. J. et al. High-resolution DNA fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet.4, 831–836 (1995). ArticleCASPubMed Google Scholar
Bentley, D. R. et al. The physical maps for sequencing human chromosomes 1, 6, 9, 10, 13, 20 and X. Nature409, 942–943 (2001). ArticleCASPubMed Google Scholar
Solinas-Toldo, S. et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer20, 399–407 (1997). ArticleCASPubMed Google Scholar
Pinkel, D. et al. High resolution analysis of DNA copy number variations using comparative genomic hybridization to microarrays. Nature Genet.20, 207–211 (1998). References 47 and 48 were the first demonstrations that high-resolution copy number estimations on high-density arrays are feasible. ArticleCASPubMed Google Scholar
Snijders, A. M. et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genet.29, 263–264 (2001). ArticleCASPubMed Google Scholar
Fiegler, H. et al. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer36, 361–374 (2003). ArticleCASPubMed Google Scholar
Veltman, J. A. et al. High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. Am. J. Hum. Genet.70, 1269–1276 (2002). ArticleCASPubMedPubMed Central Google Scholar
Schwaenen, C. et al. Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations. Proc. Natl Acad. Sci. USA101, 1039–1044 (2004). ArticleCASPubMed Google Scholar
Ishkanian, A. S. et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genet.36, 299–303 (2004). ArticleCASPubMed Google Scholar
Pollack, J. R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet.23, 41–46 (1999). ArticleCASPubMed Google Scholar
Dhami, P. et al. Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am. J. Hum. Genet.76, 750–762 (2005). ArticleCASPubMedPubMed Central Google Scholar
Carvalho, B., Ouwerkerk, E., Meijer, G. A. & Ylstra, B. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides. J. Clin. Pathol.57, 644–646 (2004). ArticleCASPubMedPubMed Central Google Scholar
Barrett, M. T. et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl Acad. Sci. USA101, 17765–17770 (2004). ArticleCASPubMed Google Scholar
Lucito, R. et al. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res.13, 2291–2305 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lindblad-Toh, K. et al. Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nature Biotechnol.18, 1001–1005 (2000). ArticleCAS Google Scholar
Zhao, X. et al. An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res.64, 3060–3071 (2004). References 57–62 describe the use of array technologies, which currently provide the highest resolution for array-based copy number analysis. ArticleCASPubMed Google Scholar
Kennedy, G. C. et al. Large-scale genotyping of complex DNA. Nature Biotechnol.21, 1233–1237 (2003). ArticleCAS Google Scholar
Matsuzaki, H. et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nature Methods1, 109–111 (2004). ArticleCASPubMed Google Scholar
Raghavan, M. et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res.65, 375–378 (2005). CASPubMed Google Scholar
Vissers, L. E. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genet.36, 955–957 (2004). A beautiful demonstration of how array CGH can identify a long-sought disease locus. ArticleCASPubMed Google Scholar
Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science305, 525–528 (2004). ArticleCASPubMed Google Scholar
Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nature Genet.36, 949–951 (2004). ArticleCASPubMed Google Scholar
Fiegler, H. et al. Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J. Med. Genet.40, 664–670 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gribble, S. M. et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J. Med. Genet.42, 8–16 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ArticleCASPubMed Google Scholar
Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell118, 555–566 (2004). ArticleCASPubMed Google Scholar
d'Adda di Magagna, F. et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature426, 194–198 (2003). ArticleCAS Google Scholar
Kondo, Y., Shen, L., Yan, P. S., Huang, T. H. & Issa, J. P. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc. Natl Acad. Sci. USA101, 7398–7403 (2004). ArticleCASPubMed Google Scholar
Dutrillaux, B., Couturier, J., Richer, C. L. & Viegas-Pequignot, E. Sequence of DNA replication in 277 R and Q-bands of human chromosomes using a BrdU treatment. Chromosoma58, 51–61 (1976). ArticleCASPubMed Google Scholar
Ganner, E. & Evans, H. J. The relationship between patterns of DNA replication and of quinacrine fluorescence in the human chromosome complement. Chromosoma35, 326–341 (1971). ArticleCASPubMed Google Scholar
Holmquist, G., Gray, M., Porter, T. & Jordan, J. Characterization of Giemsa dark- and light-band DNA. Cell31, 121–129 (1982). ArticleCASPubMed Google Scholar
Watanabe, Y. et al. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet.11, 13–21 (2002). ArticleCASPubMed Google Scholar
Sinnett, D., Flint, A. & Lalande, M. Determination of DNA replication kinetics in synchronized human cells using a PCR-based assay. Nucleic Acids Res.21, 3227–3232 (1993). ArticleCASPubMedPubMed Central Google Scholar
Selig, S., Okumura, K., Ward, D. C. & Cedar, H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J.11, 1217–1225 (1992). ArticleCASPubMedPubMed Central Google Scholar
Singh, N. et al. Coordination of the random asynchronous replication of autosomal loci. Nature Genet.33, 339–341 (2003). ArticleCASPubMed Google Scholar
Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science294, 115–121 (2001). ArticleCASPubMed Google Scholar
Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet.32, 438–442 (2002). ArticleCASPubMed Google Scholar
Woodfine K. et al. Replication timing of the human genome. Hum. Mol. Genet.13, 191–202 (2004). ArticleCASPubMed Google Scholar
Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet.2, 292–301 (2001). ArticleCASPubMed Google Scholar
Fisher, A. G. & Merkenschlager, M. Gene silencing, cell fate and nuclear organisation. Curr. Opin. Genet. Dev.12, 193–197 (2002). ArticleCASPubMed Google Scholar
Cremer, T., Küpper, K., Dietzel, S. & Fakan, S. Higher order chromatin architecture in the cell nucleus: on the way from structure to function. Biol. Cell96, 555–567 (2004). ArticleCASPubMed Google Scholar
Bolzer, A. et al. Three-dimensional maps of all chromosome positions indicate a probabilistic order in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol.3, e157 (2005). ArticleCASPubMedPubMed Central Google Scholar
Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol.145, 1119–1131 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cremer, M. et al. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J. Cell Biol.162, 809–820 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sun, H. B., Shen, J. & Yokota, H. Size-dependent positioning of human chromosomes in interphase nuclei. Biophys. J.79, 184–190 (2000). ArticleCASPubMedPubMed Central Google Scholar
Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature435, 637–645 (2005). ArticleCASPubMed Google Scholar
Belmont, A. Dynamics of chromatin, proteins, and bodies within the cell nucleus. Curr. Opin. Cell Biol.15, 304–310 (2003). ArticleCASPubMed Google Scholar
Spector, D. L. The dynamics of chromosome organization and gene regulation. Annu. Rev. Biochem.72, 573–608 (2003). ArticleCASPubMed Google Scholar
Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science265, 2085–2088 (1994). ArticleCAS Google Scholar
Lizardi, P. M. et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genet.19, 225–232 (1998). ArticleCASPubMed Google Scholar
Zhong, X. B., Lizardi, P. M., Huang, X. H., Bray-Ward, P. L. & Ward, D. C. Visualization of oligonucleotide probes and point mutations in interphase nuclei and DNA fibers using rolling circle DNA amplification. Proc. Natl Acad. Sci. USA98, 3940–3945 (2001). ArticleCASPubMed Google Scholar
Lage, J. M. et al. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res.13, 294–307 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zardo, G. et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nature Genet.32, 453–458 (2002). ArticleCASPubMed Google Scholar
Garraway, L. A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436, 117–122 (2005). ArticleCASPubMed Google Scholar
Velagaleti, G. V. et al. Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 13 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am. J. Hum. Genet.76, 652–662 (2005). ArticleCASPubMedPubMed Central Google Scholar
Inoue, K. et al. Genomic rearrangements resulting in PLP1 deletion occur by nonhomologous end joining and cause different dysmyelinating phenotypes in males and females. Am. J. Hum. Genet.71, 838–853 (2002). ArticlePubMedPubMed Central Google Scholar
Tuzun, E. et al. Fine-scale structural variation of the human genome. Nature Genet.37, 727–732 (2005). ArticleCASPubMed Google Scholar
Arnold, J. Beobachtungen über Kerntheilungen in den Zellen der Geschwülste. Virchows Archiv78, 279–301 (1879) (in German). Article Google Scholar
Flemming, W. Beiträge zur Kenntnis der Zelle und ihrer Lebenserscheinungen. 3. Teil. Archiv für mikroskopische Anatomie20, 1–86 (1881) (in German). Article Google Scholar
Hansemann, D. Über asymmetrische Zellteilung in Epithelkrebsen und deren biologische Bedeutung. Arch. Pathol. Anat.119, 299–326 (1890) (in German). Article Google Scholar
Tjio, J. H. & Levan, A. The chromosome number of man. Hereditas42, 1–6 (1956). Article Google Scholar
Lejeune, J. M., Gautier, M. & Turpin, R. Etude des chromosomes somatiques de neuf enfants mongoliens. CR Acad. Sci. Paris248, 1721–1722 (1958) (in French). Google Scholar
Jacobs, P. A. & Strong, J. A. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature183, 302–303 (1959). ArticleCASPubMed Google Scholar
Ford, C. E., Jones, K. W., Polani, P. E., De Almeida, J. C. & Briggs, J. H. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet1, 711–713 (1959). ArticleCASPubMed Google Scholar
Nowell, P. C. & Hungerford, D. A. A minute chromosome in human chronic granulocytic leukemia. Science132, 1497 (1960). Google Scholar
Caspersson, T., Zech, L. & Johansson, C. Analysis of human metaphase chromosome set by aid of DNA-binding fluorescent agents. Exp. Cell Res.62, 490–492 (1970). ArticleCASPubMed Google Scholar
Rowley, J. D. A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature243, 290–293 (1973). ArticleCASPubMed Google Scholar
Gall, J. G. & Pardue, M. L. Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA63, 378–383 (1969). ArticleCASPubMed Google Scholar
Rudkin, G. T. & Stollar, B. D. High resolution detection of DNA–RNA hybrids in situ by indirect immunofluorescence. Nature265, 472–473 (1977). ArticleCASPubMed Google Scholar
Bauman, J. G., Wiegant, J., Borst, P. & van Duijn, P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochromelabelled RNA. Exp. Cell Res.128, 485–490 (1980). ArticleCASPubMed Google Scholar
Langer, P. R., Waldrop, A. A. & Ward, D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc. Natl Acad. Sci. USA78, 6633–6637 (1981). ArticleCASPubMed Google Scholar
Landegent, J. E., Jansen in de Wal, N., Dirks, R. W., Baas, F. & van der Ploeg, M. Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum. Genet.77, 366–370 (1987). ArticleCASPubMed Google Scholar
Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad. Sci. USA85, 9138–9142 (1988). ArticleCASPubMed Google Scholar
Lichter, P., Cremer, T., Borden, J., Manuelidis, L. & Ward, D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet.80, 224–234 (1988). ArticleCASPubMed Google Scholar
Cremer, T., Lichter, P., Borden, J., Ward, D. C. & Manuelidis, L. Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome-specific library probes. Hum. Genet.80, 235–246 (1988). ArticleCASPubMed Google Scholar
Albertson, D. G. et al. Chromosome aberrations in solid tumors. Nature Genet.34, 369–376 (2003). ArticleCASPubMed Google Scholar