Family-based designs in the age of large-scale gene-association studies (original) (raw)
Risch, N. & Merikangas, K. The future of genetics studies of complex human diseases. Science273, 1516–1517 (1996). Shows that genome-wide association scans based on trios have greater power than genome-wide linkage scans based on affected sib pairs. ArticleCASPubMed Google Scholar
Clayton, D. G. et al. Population structure, differential bias and genomic control in a large-scale, case–control association study. Nature Genet.37, 1243–1246 (2005). ArticleCASPubMed Google Scholar
Freedman, M. L. et al. Assessing the impact of population stratification on genetic association studies. Nature Genet.36, 388–393 (2004). ArticleCASPubMed Google Scholar
McGinnis, R. General equations for Pt, Ps, and the power of the TDT and the affected-sib-pair test. Am. J. Hum. Genet.67, 1340–1347 (2000). CASPubMedPubMed Central Google Scholar
McGinnis, R., Shifman, S. & Darvasi, A. Power and efficiency of the TDT and case–control design for association scans. Behav. Genet.32, 135–144 (2002). ArticlePubMed Google Scholar
Zollner, S. et al. Evidence for extensive transmission distortion in the human genome. Am. J. Hum. Genet.74, 62–72 (2004). ArticlePubMed Google Scholar
Ott, J. Statistical properties of the haplotype relative risk. Genet. Epidemiol.6, 127–130. (1989) Demostrates the need for linkage and association under the alternative hypothesis for a family-based test. ArticleCASPubMed Google Scholar
Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet.6, 95–108 (2005). ArticleCASPubMed Google Scholar
Lazzeroni, L. C. & Lange, K. A conditional inference framework for extending the transmission/disequilibrium test. Hum. Hered.48, 67–81 (1998). ArticleCASPubMed Google Scholar
Rabinowitz, D. & Laird, N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered.50, 211–223 (2000). Generalization of the TDT for general pedigrees, missing parents and arbitrary phenotypes using the approach of conditioning on the sufficient statistic. ArticleCASPubMed Google Scholar
Fulker, D. W. et al. Combined linkage and association sib-pair analysis for quantitative traits. Am. J. Hum. Genet.64, 259–267 (1999). Forms the basis of the likelihood approaches for quantitative traits in family-based studies with correction for admixture. ArticleCASPubMedPubMed Central Google Scholar
Cox, D. R. & Hinkley, D. V. Theoretical Statistics 18–23 (Chapman and Hall, London, 1974). Book Google Scholar
Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet.38, 203–208 (2006). ArticleCASPubMed Google Scholar
Laird, N. et al. in Respiratory Genetics (eds Silverman, E. et al.) 27–46 (Hodder Arnold, Boston, 2005). Book Google Scholar
Weinberg, C. R. Studying parents and grandparents to assess genetic contributions to early-onset disease. Am. J. Hum. Genet.72, 438–447 (2003). ArticleCASPubMedPubMed Central Google Scholar
Martin, E. R., Kaplan, N. L. & Weir, B. S. Tests for linkage and association in nuclear families. Am. J. Hum. Genet.61, 439–448 (1997). ArticleCASPubMedPubMed Central Google Scholar
Thompson, G. Mapping disease genes: family-based association studies. Am. J. Hum. Genet.57, 487–498 (1995). Google Scholar
Schneiter, K., Laird, N. & Corcoran, C. Exact family-based association tests for biallelic data. Genet. Epidemiol.29, 185–194 (2005). ArticlePubMed Google Scholar
Lake, S. L., Blacker, D. & Laird, N. M. Family-based tests of association in the presence of linkage. Am. J. Hum. Genet.67, 1515–1525 (2000). ArticleCASPubMedPubMed Central Google Scholar
Curtis, D., Miller, M. B. & Sham, P. C. Combining the sibling disequilibrium test and transmission/disequilibrium test for multiallelic markers. Am. J. Hum. Genet.64, 1785–1786 (1999). ArticleCASPubMedPubMed Central Google Scholar
Horvath, S. & Laird, N. M. A discordant-sibship test for disequilibrium and linkage: no need for parental data. Am. J. Hum. Genet.63, 1886–1897 (1998). ArticleCASPubMedPubMed Central Google Scholar
Spielman, R. S. & Ewens, W. J. A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet.62, 450–458 (1998). ArticleCASPubMedPubMed Central Google Scholar
Knapp, M. The transmission/disequilibrium test and parental-genotype reconstruction: the reconstruction-combined transmission/ disequilibrium test. Am. J. Hum. Genet.64, 861–870 (1999). ArticleCASPubMedPubMed Central Google Scholar
Horvath, S. et al. Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet. Epidemiol.26, 61–69 (2004). ArticlePubMed Google Scholar
Dudbridge, F. Pedigree disequilibrium tests for multilocus haplotypes. Genet. Epidemiol.25, 115–121 (2003). ArticlePubMed Google Scholar
Cordell, H. J., Barratt, B. J. & Clayton, D. G. Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene–gene and gene–environment interactions, and parent-of-origin effects. Genet. Epidemiol.26, 167–185 (2004). ArticlePubMed Google Scholar
Purcell, S., Sham, P. & Daly, M. J. Parental phenotypes in family-based association analysis. Am. J. Hum. Genet.76, 249–259 (2005). ArticleCASPubMed Google Scholar
Whittaker, J. C. & Lewis, C. M. Power comparisons of the transmission/disequilibrium test and sib-transmission/disequilibrium-test statistics. Am. J. Hum. Genet.65, 578–580 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lange, C. & Laird, N. Analytical sample size and power calculations for a general class of family-based association tests: dichotomous traits. Am. J. Hum. Genet.71, 575–584 (2002). ArticleCASPubMedPubMed Central Google Scholar
Whittaker, J. C. & Lewis, C. M. The effect of family structure on linkage tests using allelic association. Am. J. Hum. Genet.63, 889–897 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lange, C. & Laird, N. M. On a general class of conditional tests for family-based association studies in genetics: the asymptotic distribution, the conditional power, and optimality considerations. Genet. Epidemiol.23, 165–180 (2002). ArticlePubMed Google Scholar
Abecasis, G. R., Cardon, L. R. & Cookson, W. O. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet.66, 279–292 (2000). ArticleCASPubMed Google Scholar
Gauderman, W. J. Candidate gene association analysis for a quantitative trait, using parent-offspring trios. Genet. Epidemiol.25, 327–338 (2003). ArticlePubMed Google Scholar
Lunetta, K. L. et al. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet.66, 605–614 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lange, C. et al. A family-based association test for repeatedly measured quantitative traits adjusting for unknown environmental and/or polygenic effects. Stat. Appl. Genet. Mol. Biol.3, 17 (2004). Article Google Scholar
Lange, C., DeMeo, D. L. & Laird, N. M. Power and design considerations for a general class of family-based association tests: quantitative traits. Am. J. Hum. Genet.71, 1330–1341 (2002). ArticleCASPubMedPubMed Central Google Scholar
Weiss, S. T. The origins of childhood asthma. Monaldi Arch. Chest Dis.49, 154–158 (1994). CASPubMed Google Scholar
Weiss, S. T. Epidemiology and heterogeneity of asthma. Ann. Allergy Asthma Immunol.87 (1 Suppl. 1), 5–8 (2001). ArticleCASPubMed Google Scholar
Silverman, E. K. et al. Familial aggregation of severe, early-onset COPD: candidate gene approaches. Chest117 (5 Suppl. 1), 273S–274S (2000). ArticleCASPubMed Google Scholar
Demeo, D. L. et al. The SERPINE2 gene is associated with chronic obstructive pulmonary disease. Am. J. Hum. Genet.78, 253–264 (2005). ArticlePubMedPubMed Central Google Scholar
Celedon, J. C. et al. The transforming growth factor-β1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum. Mol. Genet.13, 1649–1656 (2004). ArticleCASPubMed Google Scholar
Todd, R. Genetics of attention deficit/hyperactivity disorder: are we ready for molecular genetic studies? Am. J. Med. Genet.96, 241–243 (2000). ArticleCASPubMed Google Scholar
Lange, C. et al. A multivariate family-based association test using generalized estimating equations: FBAT-GEE. Biostatistics4, 195–206 (2003). ArticlePubMed Google Scholar
Mokliatchouk, O., Blacker, O. & Rabinowitz, D. Association tests for traits with variable age at onset. Hum. Hered.51, 46–53 (2001). ArticleCASPubMed Google Scholar
Lange, C., Blacker, D. & Laird, N. M. Family-based association tests for survival and times-to-onset analysis. Stat. Med.23, 179–189 (2004). ArticlePubMed Google Scholar
Jiang, H. et al. Family-based association test for time-to-onset data with time-dependent differences between the hazard functions. Genet. Epidemiol.30, 124–132 (2005). Article Google Scholar
Shih, M. C. & Whittemore, A. S. Tests for genetic association using family data. Genet. Epidemiol.22, 128–145 (2002). ArticlePubMed Google Scholar
Lange, C. et al. Using the noninformative families in family-based association tests: a powerful new testing strategy. Am. J. Hum. Genet.73, 801–811 (2003). ArticleCASPubMedPubMed Central Google Scholar
Van Steen, K. et al. Genomic screening and replication using the same data set in family-based association testing. Nature Genet.37, 683–691 (2005). Demonstrates that the multi-testing problem can be handled at a genome-wide level in family-based association tests. ArticleCASPubMed Google Scholar
Lasky-Su, J. et al. Family-based association analysis of a statistically derived quantities trait for ADDO reveals an association in DRD4 with inattentive simony in AD individuals. Am. J. Med. Genet. B Neurophyschiatr. Genet.138B, 57–58 (2005). Google Scholar
Thomas, D., Xie, R. & Gebregziabher, M. Two-stage sampling designs for gene association studies. Genet. Epidemiol.27, 401–414 (2004). ArticlePubMed Google Scholar
Rosner, B. Fundamentals of Biostatistics 5th edn 527–530 (Duxbury, Boston MA,1995). Google Scholar
Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika75, 800–802 (1988). Article Google Scholar
Herbert, A. et al. A common genetic variant 10 kb upstream of INSIG2 is associated with adult and childhood obesity. Science (in the press).
Gordon, D. et al. A transmission disequilibrium test for general pedigrees that is robust to the presence of random genotyping errors and any number of untyped parents. Eur. J. Hum. Genet.12, 752–761 (2004). ArticleCASPubMed Google Scholar
Gordon, D. et al. A transmission/disequilibrium test that allows for genotyping errors in the analysis of single-nucleotide polymorphism data. Am. J. Hum. Genet.69, 371–380 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gordon, D. & Ott, J. Assessment and management of single nucleotide polymorphism genotype errors in genetic association analysis. Pac. Symp. Biocomput. 18–29 (2001).
Spielman, R. S., McGinnis, R. E. & Ewens, W. J. Transmission test for linkage disequillibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet.52, 506–516 (1993). Proposed the original idea of the TDT. CASPubMedPubMed Central Google Scholar
Laird, N. M., Horvath, S. & Xu, X. Implementing a unified approach to family-based tests of association. Genet. Epidemiol.19 (Suppl. 1), S36–S42 (2000). ArticlePubMed Google Scholar
Self, S. et al. On estimating HLA/disease association with application to a study of aplastic anemia. Biometrics47, 53–61 (1991). ArticleCASPubMed Google Scholar
Cordell, H. J. & Clayton, D. G. A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am. J. Hum. Genet.70, 124–141 (2002). ArticleCASPubMed Google Scholar
Schaid, D. J. General score tests for associations of genetic markers with disease using cases and their parents. Genet. Epidemiol.13, 423–449 (1996). Shows how the TDT can be derived as a score statistic from a multinomial likelihood model. ArticleCASPubMed Google Scholar
Clayton, D. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am. J. Hum. Genet.65, 1170–1177 (1999). The first haplotype-analysis paper to use a likelihood approach. ArticleCASPubMedPubMed Central Google Scholar
Whittemore, A. S. & Tu, I. P. Detection of disease genes by use of family data. I. Likelihood-based theory. Am. J. Hum. Genet.66, 1328–1340 (2000). Generalized Schaid's-likelihood approach to handle missing parents, multiple offspring and incorporate founders into the test statistic. ArticleCASPubMedPubMed Central Google Scholar
Horvath, S., Xu, X. & Laird, N. M. The family based association test method: strategies for studying general genotype–phenotype associations. Euro. J. Hum. Gen.9, 301–306 (2001). ArticleCAS Google Scholar
Weinberg, C. R., Wilcox, A. J. & Lie, R. T. A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am. J. Hum. Genet.62, 969–978 (1998). ArticleCASPubMedPubMed Central Google Scholar
Weinberg, C. R. Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. Am. J. Hum. Genet.65, 229–235 (1999). ArticleCASPubMedPubMed Central Google Scholar
Umbach, D. M. & Weinberg, C. R. The use of case-parent triads to study joint effects of genotype and exposure. Am. J. Hum. Genet.66, 251–261 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kistner, E. O. & Weinberg, C. R. Method for using complete and incomplete trios to identify genes related to a quantitative trait. Genet. Epidemiol.27, 33–42 (2004). ArticlePubMed Google Scholar
Kistner, E. O. & Weinberg, C. R. A method for identifying genes related to a quantitative trait, incorporating multiple siblings and missing parents. Genet. Epidemiol.29, 155–165 (2005). ArticlePubMed Google Scholar
Kistner, E. O., Infante-Rivard, C. & Weinberg, C. R. A method for using incomplete triads to test maternally mediated genetic effects and parent-of-origin effects in relation to a quantitative trait. Am. J. Epidemiol.163, 255–261 (2006). ArticlePubMed Google Scholar
Witte, J. S., Gauderman, W. J. & Thomas, D. C. Asymptotic bias and efficiency in case–control studies of candidate genes and gene–environment interactions: basic family designs. Am. J. Epidemiol.149, 693–705 (1999). ArticleCASPubMed Google Scholar