Spreading of silent chromatin: inaction at a distance (original) (raw)
Muller, H. J. Types of visible variations induced by X-rays in Drosophila. J. Genet.22, 299–334 (1930). Google Scholar
Schultz, J. Variegation in Drosophila and the inert heterochromatic regions. Proc. Natl Acad. Sci. USA22, 27–33 (1936). CASPubMed Google Scholar
Schultz, J. The function of heterochromatin. Proc. Int. Congr. Genet.7, 257–262 (1939). Google Scholar
Ptashne, M. Gene regulation by proteins acting nearby and at a distance. Nature322, 697–701 (1986). This review clearly laid out models for how transcription factors bound to enhancers can interact with proteins at a distant promoter. CASPubMed Google Scholar
Yates, P. A. et al. Silencing of mouse Aprt is a gradual process in differentiated cells. Mol. Cell. Biol.23, 4461–4470 (2003). CASPubMedPubMed Central Google Scholar
Arnaud, P., Goubely, C., Pelissier, T. & Deragon, J. M. SINE retroposons can be used in vivo as nucleation centers for de novo methylation. Mol. Cell. Biol.20, 3434–3441 (2000). CASPubMedPubMed Central Google Scholar
Heard, E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr. Opin. Genet. Dev.15, 482–489 (2005). CASPubMed Google Scholar
Straub, T., Dahlsveen, I. K. & Becker, P. B. Dosage compensation in flies: mechanism, models, mystery. FEBS Lett.579, 3258–3263 (2005). CASPubMed Google Scholar
Huang, Y. Transcriptional silencing in _Saccharomyces cerevisia_e and _Schizosaccharomyces pomb_e. Nucleic Acids Res.30, 1465–1482 (2002). CASPubMedPubMed Central Google Scholar
Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell63, 751–762 (1990). CASPubMed Google Scholar
Sekinger, E. A. & Gross, D. S. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell105, 403–414 (2001). CASPubMed Google Scholar
Chen, L. & Widom, J. Mechanism of transcriptional silencing in yeast. Cell120, 37–48 (2005). CASPubMed Google Scholar
Renauld, H. et al. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev.7, 1133–1145 (1993). A pioneering study that defined the dependence of SIR complex silencing on distance and Sir3 dosage, and presented evidence for continuous spreading. CASPubMed Google Scholar
Hoppe, G. J. et al. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol.22, 4167–4180 (2002). CASPubMedPubMed Central Google Scholar
Rusche, L. N., Kirchmaier, A. L. & Rine, J. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol. Biol. Cell13, 2207–2222 (2002). CASPubMedPubMed Central Google Scholar
Liou, G. G., Tanny, J. C., Kruger, R. G., Walz, T. & Moazed, D. Assembly of the SIR complex and its regulation by _O_-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell121, 515–527 (2005). CASPubMed Google Scholar
Boscheron, C. et al. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus. EMBO J.15, 2184–2195 (1996). CASPubMedPubMed Central Google Scholar
Lustig, A. J., Liu, C., Zhang, C. & Hanish, J. P. Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae. Mol. Cell. Biol.16, 2483–2495 (1996). CASPubMed Google Scholar
Georgel, P. T., Palacios DeBeer, M. A., Pietz, G., Fox, C. A. & Hansen, J. C. Sir3-dependent assembly of supramolecular chromatin structures in vitro. Proc. Natl Acad. Sci. USA98, 8584–8589 (2001). CASPubMed Google Scholar
Fourel, G., Revardel, E., Koering, C. E. & Gilson, E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J.18, 2522–2537 (1999). CASPubMedPubMed Central Google Scholar
Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev.11, 83–93 (1997). Chromatin immunoprecipitation was used to locate SIR proteins on the chromosome near telomeres and to provide evidence for looping between telomeres and subtelomeres. CASPubMed Google Scholar
de Bruin, D., Zaman, Z., Liberatore, R. A. & Ptashne, M. Telomere looping permits gene activation by a downstream UAS in yeast. Nature409, 109–113 (2001). CASPubMed Google Scholar
de Bruin, D., Kantrow, S. M., Liberatore, R. A. & Zakian, V. A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol. Cell. Biol.20, 7991–8000 (2000). CASPubMedPubMed Central Google Scholar
Lebrun, E., Fourel, G., Defossez, P. A. & Gilson, E. A methyltransferase targeting assay reveals silencer-telomere interactions in budding yeast. Mol. Cell. Biol.23, 1498–1508 (2003). CASPubMedPubMed Central Google Scholar
Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev.10, 1796–1811 (1996). CASPubMed Google Scholar
Marcand, S., Buck, S. W., Moretti, P., Gilson, E. & Shore, D. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap 1 protein. Genes Dev.10, 1297–1309 (1996). CASPubMed Google Scholar
Katan-Khaykovich, Y. & Struhl, K. Heterochromatin formation involves changes in histone modifications over multiple cell generations. EMBO J.24, 2138–2149 (2005). CASPubMedPubMed Central Google Scholar
Cheng, T. H. & Gartenberg, M. R. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev.14, 452–463 (2000). The excision of a ring of silent chromatin demonstrated that the continual presence of silencers or protosilencers is necessary to maintain silent chromatin. CASPubMedPubMed Central Google Scholar
Huisinga, K. L., Brower-Toland, B. & Elgin, S. C. The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma115, 110–122 (2006). CASPubMed Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). The authors showed that mammalian SUV39H1 is a histone H3K9 methyltransferase and mapped the catalytic activity to the SET domain. CASPubMed Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). CAS Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). CAS Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). CAS Google Scholar
Thon, G. & Verhein-Hansen, J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics155, 551–568 (2000). CASPubMedPubMed Central Google Scholar
Vermaak, D., Henikoff, S. & Malik, H. S. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet.1, 96–108 (2005). CASPubMed Google Scholar
Smothers, J. F. & Henikoff, S. The hinge of and chromo shadow domain impart distinct targeting of HP1-like proteins. Mol. Cell. Biol.21, 2555–2569 (2001). CASPubMedPubMed Central Google Scholar
Minc, E., Allory, Y., Worman, H. J., Courvalin, J. C. & Buendia, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma108, 220–234 (1999). CASPubMed Google Scholar
Hayakawa, T., Haraguchi, T., Masumoto, H. & Hiraoka, Y. Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J. Cell Sci.116, 3327–3338 (2003). CASPubMed Google Scholar
Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol.10, 27–30 (2000). CASPubMed Google Scholar
Lechner, M. S., Schultz, D. C., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. Biochem. Biophys. Res. Commun.331, 929–937 (2005). CASPubMed Google Scholar
Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J.21, 1121–1131 (2002). CASPubMedPubMed Central Google Scholar
Yamamoto, K. & Sonoda, M. Self-interaction of heterochromatin protein 1 is required for direct binding to histone methyltransferase, SUV39H1. Biochem. Biophys. Res. Commun.301, 287–292 (2003). CASPubMed Google Scholar
Noma, K., Allis, C. D. & Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science293, 1150–1155 (2001). CASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). This paper demonstrated that spreading in the fission yeast mating type region depends on Swi6, and that the RNAi machinery acts withcenHto establish heterochromatin. CASPubMed Google Scholar
Ayoub, N., Goldshmidt, I., Lyakhovetsky, R. & Cohen, A. A fission yeast repression element cooperates with centromere-like sequences and defines a mat silent domain boundary. Genetics156, 983–994 (2000). CASPubMedPubMed Central Google Scholar
Yamada, T., Fischle, W., Sugiyama, T., Allis, C. D. & Grewal, S. I. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell20, 173–185 (2005). CASPubMed Google Scholar
Jia, S., Noma, K. & Grewal, S. I. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science304, 1971–1976 (2004). CASPubMed Google Scholar
Kim, H. S., Choi, E. S., Shin, J. A., Jang, Y. K. & Park, S. D. Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J. Biol. Chem.279, 42850–42859 (2004). References 49 and 50 demonstrated that there are two redundant pathways for nucleating heterochromatin at the fission yeast mating type locus, one RNAi-dependent and one not. CASPubMed Google Scholar
Shankaranarayana, G. D., Motamedi, M. R., Moazed, D. & Grewal, S. I. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr. Biol.13, 1240–1246 (2003). CASPubMed Google Scholar
Hansen, K. R. et al. Global effects on gene expression in fission yeast by silencing and RNA interference machineries. Mol. Cell. Biol.25, 590–601 (2005). CASPubMedPubMed Central Google Scholar
Stewart, M. D., Li, J. & Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol.25, 2525–2538 (2005). CASPubMedPubMed Central Google Scholar
Cheutin, T., Gorski, S. A., May, K. M., Singh, P. B. & Misteli, T. In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin. Mol. Cell. Biol.24, 3157–3167 (2004). CASPubMedPubMed Central Google Scholar
Dialynas, G. K. et al. Methylation-independent binding to Histone H3 and cell cycle-dependent incorporation of HP1β into heterochromatin. J. Biol. Chem.281, 14350–14360 (2006). CASPubMed Google Scholar
Meehan, R. R., Kao, C. F. & Pennings, S. HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J.22, 3164–3174 (2003). CASPubMedPubMed Central Google Scholar
Zhao, T., Heyduk, T., Allis, C. D. & Eissenberg, J. C. Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J. Biol. Chem.275, 28332–28338 (2000). CASPubMed Google Scholar
Muchardt, C. et al. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep.3, 975–981 (2002). CASPubMedPubMed Central Google Scholar
Nielsen, A. L. et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell7, 729–739 (2001). CASPubMed Google Scholar
Nakayama, J., Allshire, R. C., Klar, A. J. & Grewal, S. I. A role for DNA polymerase-α in epigenetic control of transcriptional silencing in fission yeast. EMBO J.20, 2857–2866 (2001). CASPubMed Central Google Scholar
Cheutin, T. et al. Maintenance of stable heterochromatin domains by dynamic HP1 binding. Science299, 721–725 (2003). CASPubMed Google Scholar
Festenstein, R. et al. Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science299, 719–721 (2003). References 61 and 62 demonstrated that mammalian HP1 proteins are surprisingly mobile. CASPubMed Google Scholar
Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G. & Hemmerich, P. High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. Mol. Biol. Cell15, 2819–2833 (2004). CASPubMedPubMed Central Google Scholar
Krouwels, I. M. et al. A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J. Cell Biol.170, 537–549 (2005). CASPubMedPubMed Central Google Scholar
Vermaak, D., Ahmad, K. & Henikoff, S. Maintenance of chromatin states: an open-and-shut case. Curr. Opin. Cell Biol.15, 266–274 (2003). CASPubMed Google Scholar
Martienssen, R. A., Zaratiegui, M. & Goto, D. B. RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet.21, 450–456 (2005). CASPubMed Google Scholar
Verdel, A. & Moazed, D. RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett.579, 5872–5878 (2005). CASPubMed Google Scholar
Horn, P. J., Bastie, J. N. & Peterson, C. L. A Rik1-associated, cullin-dependent E3 ubiquitin ligase is essential for heterochromatin formation. Genes Dev.19, 1705–1714 (2005). CASPubMedPubMed Central Google Scholar
Li, F. et al. Two novel proteins, Dos1 and Dos2, interact with Rik1 to regulate heterochromatic RNA interference and histone modification. Curr. Biol.15, 1448–1457 (2005). CASPubMed Google Scholar
Jia, S., Kobayashi, R. & Grewal, S. I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nature Cell Biol.7, 1007–1013 (2005). CASPubMed Google Scholar
Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J.23, 3825–3835 (2004). CASPubMedPubMed Central Google Scholar
Thon, G. et al. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics171, 1583–1595 (2005). CASPubMedPubMed Central Google Scholar
Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet.36, 1174–1180 (2004). CASPubMed Google Scholar
Hampsey, M. & Reinberg, D. Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell113, 429–432 (2003). CAS Google Scholar
Buhler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell125, 873–886 (2006). This study demonstrated that tethering the RITS complex to the nascent transcripts of a euchromatic reporter induces heterochromatin and produces siRNAs that act predominantly incis, but can initiate heterochromatin intranswhen the siRNase Eri1 is deleted. CASPubMed Google Scholar
Frankham, R. Molecular hypotheses for position-effect variegation: anti-sense transcription and promoter occlusion. J. Theor. Biol.135, 85–107 (1988). CASPubMed Google Scholar
Ahmad, K. & Golic, K. G. Somatic reversion of chromosomal position effects in Drosophila. Genetics114, 657–670 (1996). Google Scholar
Locke, J., Kotarski, M. A. & Tartof, K. D. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics120, 181–198 (1988). CASPubMedPubMed Central Google Scholar
Wustmann, G., Szidonya, J., Taubert, H. & Reuter, G. The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol. Gen. Genet.217, 520–527 (1989). CASPubMed Google Scholar
Seum, C., Delattre, M., Spierer, A. & Spierer, P. Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila. EMBO J.20, 812–818 (2001). Elegant HP1-tethering experiments demonstrated that ectopic HP1 can nucleate heterochromatin when tethered near dispersed repetitive elements in euchromatin, and form loops to sites of intercalary and pericentric heterochromatin. CASPubMedPubMed Central Google Scholar
Li, Y., Danzer, J. R., Alvarez, P., Belmont, A. S. & Wallrath, L. L. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development130, 1817–1824 (2003). CASPubMed Google Scholar
Danzer, J. R. & Wallrath, L. L. Mechanisms of HP1-mediated gene silencing in Drosophila. Development131, 3571–3580 (2004). CASPubMed Google Scholar
van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nature Biotechnol.18, 424–428 (2000). CAS Google Scholar
Sun, F. L. et al. _Cis_-acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol. Cell. Biol.24, 8210–8220 (2004). CASPubMedPubMed Central Google Scholar
Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster genome. Curr. Biol.11, 1017–1027 (2001). CASPubMed Google Scholar
Belyaeva, E. S. & Zhimulev, I. F. Cytogenetic and molecular aspects of position effect variegation in Drosophila III. Continuous and discontinuous compaction of chromosomal material as a result of position effect variegation. Chromosoma100, 453–466 (1991). CASPubMed Google Scholar
Csink, A. K., Bounoutas, A., Griffith, M. L., Sabl, J. F. & Sage, B. T. Differential gene silencing by _trans_-heterochromatin in Drosophila melanogaster. Genetics160, 257–69 (2002). CASPubMedPubMed Central Google Scholar
Talbert, P. B. & Henikoff, S. A reexamination of spreading of position-effect variegation in the white_–_roughest region of Drosophila melanogaster. Genetics154, 259–272 (2000). This reexamination of silencing at the two genes originally used to infer continuous spreading of heterochromatin found that inactivation frequencies of the genes are not correlated, and provided evidence for discontinuous spreading and rearrangement-specific effects. CASPubMedPubMed Central Google Scholar
Dorer, D. R. & Henikoff, S. Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics147, 1181–1190 (1997). CASPubMedPubMed Central Google Scholar
Talbert, P. B., LeCiel, C. D. S. & Henikoff, S. Modification of the Drosophila heterochromatic mutation brown Dominant by linkage alterations. Genetics136, 559–571 (1994). CASPubMedPubMed Central Google Scholar
Sage, B. T. & Csink, A. K. Heterochromatic self-association, a determinant of nuclear organization, does not require sequence homology in Drosophila. Genetics165, 1183–1193 (2003). CASPubMedPubMed Central Google Scholar
Dorer, D. R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell77, 993–1002 (1994). CASPubMed Google Scholar
Henikoff, S. Dosage-dependent modification of position-effect variegation in Drosophila. Bioessays18, 401–409 (1996). CASPubMed Google Scholar
Wakimoto, B. T. & Hearn, M. G. The effects of chromosome rearrangements on the expression of heterochromatic genes in Chromosome 2L of Drosophila melanogaster. Genetics125, 141–154 (1990). The authors put forward an influential proposal that the association of heterochromatic regions within the nucleus favours heterochromatin formation. CASPubMedPubMed Central Google Scholar
Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science303, 669–672 (2004). CASPubMed Google Scholar
Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell5, 337–350 (2003). CASPubMed Google Scholar
Aravin, A. A. et al. Dissection of a natural RNA silencing process in the Drosophila melanogaster germ line. Mol. Cell. Biol.24, 6742–6750 (2004). CASPubMedPubMed Central Google Scholar
Dreesen, T. D., Henikoff, S. & Loughney, K. A pairing-sensitive element that mediates _trans_-inactivation is associated with the Drosophila brown gene. Genes Dev.5, 331–340 (1991). CASPubMed Google Scholar
Martienssen, R. A. Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genet.35, 213–214 (2003). CASPubMed Google Scholar
Sabl, J. F. & Henikoff, S. Copy number and orientation determine the susceptibility of a gene to silencing by nearby heterochromatin in Drosophila. Genetics142, 447–458 (1996). CASPubMedPubMed Central Google Scholar
Czermin, B. et al. Drosophila enhancer of zeste/ESC complexes have a Histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell111, 185–196 (2002). CASPubMed Google Scholar
Bender, W. et al. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science221, 23–29 (1983). CASPubMed Google Scholar
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet.38, 413–43 (2004). CAS Google Scholar
Pirrotta, V. & Rastelli, L. white gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila. Bioessays16, 549–556 (1994). This survey of chromatin effects proposed an influential model of spreading through association of PcG proteins at PREs and secondary binding sites, and emphasized similarities between PcG silencing and heterochromatin. CASPubMed Google Scholar
Schwartz, Y. B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genet.38, 700–705 (2006). Genomic profiling revealed that H3K27 is widely distributed around PREs, whereas PcG proteins and particularly the histone methyltransferase E(z) are more tightly distributed. CASPubMed Google Scholar
Phair, R. D. et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol.24, 6393–6402 (2004). CASPubMedPubMed Central Google Scholar
Luo, K., Vega-Palas, M. A. & Grunstein, M. Rap1–Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev.16, 1528–1539 (2002). CASPubMedPubMed Central Google Scholar
Bose, M. E. et al. The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol. Cell. Biol.24, 774–86 (2004). CASPubMedPubMed Central Google Scholar
Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell80, 583–592 (1995). CASPubMed Google Scholar
Carmen, A. A., Milne, L. & Grunstein, M. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J. Biol. Chem.277, 4778–4481 (2002). CASPubMed Google Scholar
Connelly, J. J. et al. Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Mol. Cell. Biol.26, 3256–3265 (2006). CASPubMedPubMed Central Google Scholar
de Wit, E., Greil, F. & van Steensel, B. Genome-wide HP1 binding in _Drosophil_a: developmental plasticity and genomic targeting signals. Genome Res.15, 1265–1273 (2005). CASPubMedPubMed Central Google Scholar
Greil, F. et al. Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev.17, 2825–2838 (2003). CASPubMedPubMed Central Google Scholar
Czermin, B. et al. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep.2, 915–919 (2001). CASPubMedPubMed Central Google Scholar
Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev.18, 1251–1262 (2004). CASPubMedPubMed Central Google Scholar
Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev.18, 2973–2983 (2004). CASPubMedPubMed Central Google Scholar
Zhang, W. et al. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development133, 229–235 (2006). CASPubMed Google Scholar
Jaquet, Y., Delattre, M., Montoya-Burgos, J., Spierer, A. & Spierer, P. Conserved domains control heterochromatin localization and silencing properties of SU(VAR)3-7. Chromosoma115, 139–150 (2006). CASPubMed Google Scholar
Cléard, F., Delattre, M. & Spierer, P. SU(VAR)3-7, a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position effect variegation. EMBO J.16, 5280–5288 (1997). PubMedPubMed Central Google Scholar
Delattre, M., Spierer, A., Jaquet, Y. & Spierer, P. Increased expression of Drosophila Su(var)3-7 triggers Su(var)3-9-dependent heterochromatin formation. J. Cell Sci.117, 6239–6247 (2004). CASPubMed Google Scholar