The versatile worm: genetic and genomic resources for Caenorhabditis elegans research (original) (raw)
C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science282, 2012–2018 (1998). This cornerstone paper describes the sequencing of theC. elegansgenome, the first from a multicellular organism. The project produced the essentially complete catalogue of worm genes, enabling functional and genomic studies. Collaboration between the Sequencing Consortium and theC. elegansresearch community was essential for cross-correlation of physical and genetic maps, making possible much of the genetic research that relied heavily on positional cloning of mutants identified in genetic screens.
Stein, L. et al. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol.1, 166–192 (2003). ArticleCAS Google Scholar
Wood, W. B. (ed.) The Nematode Caenorhabditis elegans (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1988). Google Scholar
Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. (eds) C. Elegans II (Cold Spring Harbor Laboratory Press, Plainview, 1997). Google Scholar
Girard, L. R. et al. WormBook: the online review of Caenorhabditis elegans biology. Nucleic Acids Res.35, D472–D475 (2006). WormBook provides up-to-date reviews on all aspects ofC. elegansbiology and the experimental methods that are used to study this organism. The paper describes the goals of the project, the current content of WormBook and its future directions. ArticlePubMedPubMed Central Google Scholar
Bieri, T. et al. WormBase: new content and better access. Nucleic Acids Res.35, D506–D510 (2007). The article is the latest instalment in a series of articles that focus on the most recent changes and additions to WormBase. As the primary database forC. elegansand related nematodes, WormBase accumulates comprehensive genetic, genomic and functional information onC. elegansgenes and provides links to other databases and resources such as PubMed and Entrez Gene. ArticleCASPubMed Google Scholar
Gunsalus, K. C., Yueh, W. C., MacMenamin, P. & Piano, F. RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects. Nucleic Acids Res.32, D406–D410 (2004). In-depth studies of the phenotypes that are produced in genome-wide RNAi screens hold great promise for large-scale functional analyses of the genome. RNAiDB exemplifies the controlled-vocabulary-based approach to phenotype description, which enables computational analyses of observed defects, including phenotypic clustering, classification and gene searches involving phenotypic signature similarity. ArticleCASPubMedPubMed Central Google Scholar
Sonnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature434, 462–469 (2005). ArticleCASPubMed Google Scholar
Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science303, 540–543 (2004). Gene- and protein-interaction networks and their integration with other types of large-scale data sets serve as powerful hypotheses generating tools. This article describes the first attempt to build a protein-interaction network inC. elegansusing a high-throughput yeast two-hybrid approach. ArticleCASPubMedPubMed Central Google Scholar
Barrasa, M. I., Vaglio, P., Cavasino, F., Jacotot, L. & Walhout, A. J. EDGEdb: a transcription factor–DNA interaction database for the analysis of C. elegans differential gene expression. BMC Genomics8, 21 (2007). ArticlePubMedPubMed Central Google Scholar
Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol.11, 171–176 (2001). ArticleCASPubMed Google Scholar
Mounsey, A., Bauer, P. & Hope, I. A. Evidence suggesting that a fifth of annotated Caenorhabditis elegans genes may be pseudogenes. Genome Res.12, 770–775 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hope, I. A. et al. Feasibility of genome-scale construction of promoter::reporter gene fusions for expression in Caenorhabditis elegans using a multisite Gateway recombination system. Genome Res.14, 2070–2075 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ball, C. A. et al. The Stanford Microarray Database accommodates additional microarray platforms and data formats. Nucleic Acids Res.33, D580–D582 (2005). ArticleCASPubMed Google Scholar
Kim, S. K. et al. A gene expression map for Caenorhabditis elegans. Science293, 2087–2092 (2001). ArticleCASPubMed Google Scholar
Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science302, 249–255 (2003). ArticleCASPubMed Google Scholar
Barrett, T. et al. NCBI GEO: mining millions of expression profiles — database and tools. Nucleic Acids Res.33, D562–D566 (2005). ArticleCASPubMed Google Scholar
Parkinson, H. et al. ArrayExpress — a public repository for microarray gene expression data at the EBI. Nucleic Acids Res.33, D553–D555 (2005). ArticleCASPubMed Google Scholar
Kapushesky, M. et al. Expression Profiler: next generation — an online platform for analysis of microarray data. Nucleic Acids Res.32, W465–W470 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jones, S. J. et al. Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res.11, 1346–1352 (2001). ArticleCASPubMed Google Scholar
McKay, S. J. et al. Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol.68, 159–169 (2003). ArticleCASPubMed Google Scholar
Halaschek-Wiener, J. et al. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression. Genome Res.15, 603–615 (2005). ArticleCASPubMedPubMed Central Google Scholar
Muller, H. M., Kenny, E. E. & Sternberg, P. W. Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol.2, e309 (2004). Textpresso is a full-text literature search platform that was developed specifically forC. elegansresearch. This paper outlines the logic behind its powerful ontology-based search engine and discusses new possibilities that are offered by the system. ArticlePubMedPubMed Central Google Scholar
Sommer, R. J. As good as they get: cells in nematode vulva development and evolution. Curr. Opin. Cell Biol.13, 715–720 (2001). ArticleCASPubMed Google Scholar
Mitreva, M. & Jasmer, D. P. Biology and genome of Trichinella spiralis in WormBook (ed. The C. elegans Research Community) 23 Nov 2006 (doi: 10.1895/wormbook.1.124.1). Google Scholar
Robert, V. & Bessereau, J. L. Targeted engineering of the Caenorhabditis elegans genome following _Mos1_-triggered chromosomal breaks. EMBO J.26, 170–183 (2007). ArticleCASPubMed Google Scholar
Walhout, A. J. et al. Gateway recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol.328, 575–592 (2000). ArticleCASPubMed Google Scholar
Lamesch, P. et al. C. elegans ORFeome version 3. 1: increasing the coverage of ORFeome resources with improved gene predictions. Genome Res.14, 2064–2069 (2004). ArticleCASPubMedPubMed Central Google Scholar
Timmons, L. Delivery methods for RNA interference in C. elegans. Methods Mol. Biol.351, 119–125 (2006). CASPubMed Google Scholar
Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell6, 605–616 (2000). Microarray analyses have become an essential part of biological research. The firstC. elegansmicroarray-based expression-profiling study, which paved the way for many functional studies inC. elegans, is presented in this paper. ArticleCASPubMed Google Scholar
Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA98, 218–223 (2001). ArticleCASPubMed Google Scholar
Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics157, 1217–1226 (2001). CASPubMedPubMed Central Google Scholar
Piano, F. et al. Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr. Biol.12, 1959–1964 (2002). ArticleCASPubMed Google Scholar
Alexeyenko, A., Tamas, I., Liu, G. & Sonnhammer, E. L. Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics22, e9–e15 (2006). ArticleCASPubMed Google Scholar
Husson, S. J., Clynen, E., Baggerman, G., De Loof, A. & Schoofs, L. Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry. Biochem. Biophys. Res. Commun.335, 76–86 (2005). ArticleCASPubMed Google Scholar
Wielsch, N. et al. Rapid validation of protein identifications with the borderline statistical confidence via de novo sequencing and MS BLAST searches. J. Proteome Res.5, 2448–2456 (2006). ArticleCASPubMed Google Scholar
Maglott, D., Ostell, J., Pruitt, K. D. & Tatusova, T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res.33, D54–D58 (2005). ArticleCASPubMed Google Scholar
Kent, W. J. & Zahler, A. M. Conservation, regulation, synteny, and introns in a large-scale C. briggsae_–_C. elegans genomic alignment. Genome Res.10, 1115–1125 (2000). ArticleCASPubMed Google Scholar
Jurka, J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet.16, 418–420 (2000). ArticleCASPubMed Google Scholar
Bairoch, A. et al. The Universal Protein Resource (UniProt). Nucleic Acids Res.33, D154–D159 (2005). ArticleCASPubMed Google Scholar
O'Brien, K. P., Remm, M. & Sonnhammer, E. L. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res.33, D476–D480 (2005). ArticleCASPubMed Google Scholar
Chen, F., Mackey, A. J., Stoeckert, C. J. Jr & Roos, D. S. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res.34, D363–D368 (2006). ArticleCASPubMed Google Scholar
Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res.34, D572–D580 (2006). ArticleCASPubMed Google Scholar
Joshi-Tope, G. et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res.33, D428–D432 (2005). ArticleCASPubMed Google Scholar
Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res.32, D277–D280 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lemer, C. et al. The aMAZE LightBench: a web interface to a relational database of cellular processes. Nucleic Acids Res.32, D443–D448 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet.25, 25–29 (2000). ArticleCASPubMed Google Scholar
Finn, R. D. et al. Pfam: clans, web tools and services. Nucleic Acids Res.34, D247–D251 (2006). ArticleCASPubMed Google Scholar
Griffiths-Jones, S. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res.33, D121–D124 (2005). ArticleCASPubMed Google Scholar
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34, D140–D144 (2006). ArticleCASPubMed Google Scholar
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). ArticleCASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). ArticleCASPubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). ArticleCASPubMed Google Scholar
Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–862 (2001). ArticleCASPubMed Google Scholar