Generating specificity and diversity in the transcriptional response to hypoxia (original) (raw)
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer3, 721–732 (2003). CAS Google Scholar
Smith, T. G., Robbins, P. A. & Ratcliffe, P. J. The human side of hypoxia-inducible factor. Br. J. Haematol.141, 325–334 (2008). CASPubMedPubMed Central Google Scholar
Weidemann, A. & Johnson, R. S. Biology of HIF-1α. Cell Death Differ.15, 621–727 (2008). CASPubMed Google Scholar
Simon, M. C., Liu, L., Barnhart, B. C. & Young, R. M. Hypoxia-induced signaling in the cardiovascular system. Annu. Rev. Physiol.70, 51–71 (2008). CASPubMedPubMed Central Google Scholar
Chan, D. A., Krieg, A. J., Turcotte, S. & Giaccia, A. J. HIF gene expression in cancer therapy. Methods Enzymol.435, 323–345 (2007). CASPubMed Google Scholar
Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer2, 38–47 (2002). CAS Google Scholar
Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Rev. Cancer8, 705–713 (2008). CAS Google Scholar
Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA92, 5510–5514 (1995). CASPubMedPubMed Central Google Scholar
Chen, K. F., Lai, Y. Y., Sun, H. S. & Tsai, S. J. Transcriptional repression of human cad gene by hypoxia inducible factor-1α. Nucleic Acids Res.33, 5190–5198 (2005). CASPubMedPubMed Central Google Scholar
Mazure, N. M. et al. Repression of α-fetoprotein gene expression under hypoxic conditions in human hepatoma cells: characterization of a negative hypoxia response element that mediates opposite effects of hypoxia inducible factor-1 and c-Myc. Cancer Res.62, 1158–1165 (2002). CASPubMed Google Scholar
Peyssonnaux, C. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest.117, 1926–1932 (2007). CASPubMedPubMed Central Google Scholar
Mole, D. R. et al. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem.284, 16767–16775 (2009). CASPubMedPubMed Central Google Scholar
Wenger, R. H., Stiehl, D. P. & Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE2005, re12 (2005). PubMed Google Scholar
Antonsson, C., Arulampalam, V., Whitelaw, M. L., Pettersson, S. & Poellinger, L. Constitutive function of the basic helix–loop–helix/PAS factor Arnt. Regulation of target promoters via the E box motif. J. Biol. Chem.270, 13968–13972 (1995). CASPubMed Google Scholar
Sogawa, K. et al. Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. Proc. Natl Acad. Sci. USA92, 1936–1940 (1995). CASPubMedPubMed Central Google Scholar
Lindebro, M. C., Poellinger, L. & Whitelaw M. L. Protein–protein interaction via PAS domains: role of the PAS domain in positive and negative regulation of the bHLH/PAS dioxin receptor–Arnt transcription factor complex. EMBO J.14, 3528–3539 (1995). CASPubMedPubMed Central Google Scholar
Pongratz, I., Antonsson, C., Whitelaw, M. L. & Poellinger, L. Role of the PAS domain in regulation of dimerization and DNA binding specificity of the dioxin receptor. Mol. Cell. Biol.18, 4079–4088 (1998). CASPubMedPubMed Central Google Scholar
Ruas, J. L., Poellinger, L. & Pereira, T. Role of CBP in regulating HIF-1-mediated activation of transcription. J. Cell Sci.118, 301–311 (2005). CASPubMed Google Scholar
Carrero, P. et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1α. Mol. Cell. Biol.20, 402–415 (2000). CASPubMedPubMed Central Google Scholar
Kato, H., Tamamizu-Kato, S. & Shibasaki, F. Histone deacetylase 7 associates with hypoxia-inducible factor 1α and increases transcriptional activity. J. Biol. Chem.279, 41966–41974 (2004). CASPubMed Google Scholar
Mahon, P. C., Hirota, K. & Semenza, G. L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev.15, 2675–2686 (2001). CASPubMedPubMed Central Google Scholar
Kallio, P. J., Pongratz, I., Gradin, K., McGuire, J. & Poellinger, L. Activation of hypoxia-inducible factor 1α: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc. Natl Acad. Sci. USA94, 5667–5672 (1997). CASPubMedPubMed Central Google Scholar
Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem.272, 22642–22647 (1997). CASPubMed Google Scholar
Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA95, 7987–7992 (1998). CASPubMedPubMed Central Google Scholar
Kallio, P. J. et al. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1α. EMBO J.17, 6573–6586 (1998). CASPubMedPubMed Central Google Scholar
Kallio, P. J., Wilson, W. J., O'Brien, S., Makino, Y. & Poellinger, L. Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J. Biol. Chem.274, 6519–6525 (1999). CASPubMed Google Scholar
Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science284, 455–461 (1999). CASPubMed Google Scholar
Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel–Lindau tumor suppressor protein. EMBO J.19, 4298–4309 (2000). CASPubMedPubMed Central Google Scholar
Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein. Nature Cell Biol.2, 423–427 (2000). CASPubMed Google Scholar
Cockman, M. E. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J. Biol. Chem.275, 25733–25741 (2000). CASPubMed Google Scholar
Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292, 464–468 (2001). CASPubMed Google Scholar
Jaakkola, P. et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472 (2001). CASPubMed Google Scholar
Epstein A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54 (2001). CASPubMed Google Scholar
Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science294, 1337–1340 (2001). CASPubMed Google Scholar
Lando, D. et al. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science295, 858–861 (2002). CASPubMed Google Scholar
Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev.16, 1466–1471 (2002). CASPubMedPubMed Central Google Scholar
Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem.277, 26351–26355 (2002). CASPubMed Google Scholar
Carbia-Nagashima, A. et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1α during hypoxia. Cell131, 309–323 (2007). CASPubMed Google Scholar
Cheng, J., Kang, X., Zhang, S. & Yeh, E. T. SUMO-specific protease 1 is essential for stabilization of HIF1α during hypoxia. Cell131, 584–595 (2007). This paper describes the discovery of a new mechanism for the regulation of VHL–HIFα interaction. CASPubMedPubMed Central Google Scholar
André, H. & Pereira, T. S. Identification of an alternative mechanism of degradation of the hypoxia-inducible factor-1α. J. Biol. Chem.283, 29375–29384 (2008). PubMedPubMed Central Google Scholar
Tojo, M. et al. The aryl hydrocarbon receptor nuclear transporter is modulated by the SUMO-1 conjugation system. J. Biol. Chem.277, 46576–46585 (2002). CASPubMed Google Scholar
Cardone, L. et al. Circadian clock control by SUMOylation of BMAL1. Science309, 1390–1394 (2005). CASPubMed Google Scholar
Gradin, K. et al. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol. Cell. Biol.16, 5221–5231 (1996). CASPubMedPubMed Central Google Scholar
Liu, Y. V. et al. RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol. Cell25, 207–217 (2007). PubMedPubMed Central Google Scholar
Yun, Z., Maecker, H. L., Johnson, R. S. & Giaccia, A. J. Inhibition of PPAR γ 2 expression by the HIF-1-regulated gene DEC1/Stra13. Dev. Cell2, 331–341 (2002). CASPubMed Google Scholar
Boutin, A. T. et al. Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell132, 223–234 (2008). This paper indicates a role of the skin as a mediator of systemic responses to environmental oxygen. Google Scholar
Botusan, I. R. et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc. Natl Acad. Sci. USA105, 19426–19431 (2008). CASPubMedPubMed Central Google Scholar
Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev.12, 149–162 (1998). CASPubMedPubMed Central Google Scholar
Ryan, H. E., Lo, J. & Johnson, R. S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J.17, 3005–3015 (1998). CASPubMedPubMed Central Google Scholar
Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature394, 485–490 (1998). CASPubMed Google Scholar
Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature386, 403–407.
Tian, H., Hammer, R. E., Matsumoto, A. M., Russell, D. W. & McKnight, S. L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev.12, 3320–3324 (1998). CASPubMedPubMed Central Google Scholar
Peng, J., Zhang, L. Y., Drysdale L. & Fong, G. H. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc. Natl Acad. Sci. USA97, 8386–8391 (2000). CASPubMedPubMed Central Google Scholar
Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nature Med.8, 702–710 (2002). CASPubMed Google Scholar
Scortegagna, M. et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1−/− mice. Nature Genet.35, 331–340 (2003). CASPubMed Google Scholar
Morita, M. et al. HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J.22, 1134–1146 (2003). CASPubMedPubMed Central Google Scholar
Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell112, 645–657 (2003). Myeloid-specific gene targeting identifies an essential role for HIF1α in regulating inflammatory responses. CASPubMedPubMed Central Google Scholar
Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature453, 807–811 (2008). CASPubMedPubMed Central Google Scholar
Yamashita, T. et al. Abnormal heart development and lung remodeling in mice lacking the hypoxia-inducible factor-related basic helix–loop–helix PAS protein NEPAS. Mol. Cell. Biol.28, 1285–1297 (2008). CASPubMed Google Scholar
Krishnan, J. et al. Activation of a HIF1α–PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab.9, 512–524 (2009). CASPubMed Google Scholar
Percy, M. J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl Acad. Sci. USA103, 654–659 (2006). CASPubMedPubMed Central Google Scholar
Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med.358, 162–168 (2008). This study provides evidence that HIF2α is a transcription factor that regulates EPO levels in humans. CASPubMedPubMed Central Google Scholar
Ang, S. O. et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nature Genet.32, 614–621 (2002). CASPubMed Google Scholar
Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol.5, 343–354 (2004). CAS Google Scholar
Cao, R., Jensen, L. D., Soll, I., Hauptmann, G. & Cao, Y. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLoS ONE3, e2748 (2008). PubMedPubMed Central Google Scholar
Marques, I. J. et al. Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J. Comp. Physiol. B178, 77–92 (2008). CASPubMed Google Scholar
Ton, C., Stamatiou, D. & Liew, C. C. Gene expression profile of zebrafish exposed to hypoxia during development. Physiol. Genomics13, 97–106 (2003). CASPubMed Google Scholar
van Rooijen, E. et al. Zebrafish mutants in the von Hippel–Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood113, 6449–6460 (2009). CASPubMed Google Scholar
Azad, P., Zhou, D., Russo, E. & Haddad, G. G. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster. PLoS ONE4, e5371 (2009). PubMedPubMed Central Google Scholar
Zhou, D. et al. Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. PLoS Genet.4, e1000221 (2008). PubMedPubMed Central Google Scholar
Zhou, D. et al. Experimental selection for Drosophila survival in extremely low O2 environment. PLoS ONE2, e490 (2007). PubMedPubMed Central Google Scholar
Shen, C., Nettleton, D., Jiang, M., Kim, S. K. & Powell-Coffman, J. A. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J. Biol. Chem.280, 20580–20588 (2005). CASPubMed Google Scholar
Bishop, T. et al. Genetic analysis of pathways regulated by the von Hippel–Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol.2, e289 (2004). PubMedPubMed Central Google Scholar
Kundaje, A. et al. A predictive model of the oxygen and heme regulatory network in yeast. PLoS Comput. Biol.4, e1000224 (2008). PubMedPubMed Central Google Scholar
Hickman, M. J. & Winston, F. Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor. Mol. Cell. Biol.27, 7414–7424 (2007). CASPubMedPubMed Central Google Scholar
Rustad, T. R., Harrell, M. I., Liao, R. & Sherman, D. R. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS ONE3, e1502 (2008). PubMedPubMed Central Google Scholar
Park, H. D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol. Microbiol.48, 833–843 (2003). CASPubMedPubMed Central Google Scholar
Sherman, D. R. et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc. Natl Acad. Sci. USA98, 7534–7539 (2001). CASPubMedPubMed Central Google Scholar
Baena-Gonzalez, E., Rolland, F., Thevelein, J. M. & Sheen, J. A central integrator of transcription networks in plant stress and energy signalling. Nature448, 938–942 (2007). CASPubMed Google Scholar
Loreti, E., Poggi, A., Novi, G., Alpi, A. & Perata, P. A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol.137, 1130–1138 (2005). CASPubMedPubMed Central Google Scholar
Chi, J. T. et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med.3, e47 (2006). PubMedPubMed Central Google Scholar
Benita, Y. et al. An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res.37, 4587–4602 (2009). CASPubMedPubMed Central Google Scholar
Chua, S.-W. et al. A novel normalization method for effective removal of systematic variation in microarray data. Nucleic Acids Res.34, e38 (2006). PubMedPubMed Central Google Scholar
Xia, X. et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc. Natl Acad. Sci. USA106, 4260–4265 (2009). CASPubMedPubMed Central Google Scholar
Pollard, P. J. et al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α. Biochem. J.416, 387–394 (2008). CASPubMed Google Scholar
Beyer, S., Kristensen, M. M., Jensen, K. S., Johansen, J. V. & Staller, P. The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J. Biol. Chem.283, 36542–3 6552. Google Scholar
Vengellur, A., Phillips, J. M., Hogenesch, J. B. & LaPres, J. J. Gene expression profiling of hypoxia signaling in human hepatocellular carcinoma cells. Physiol. Genomics22, 308–318 (2005). CASPubMed Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). CASPubMed Google Scholar
Farh, K. K. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science310, 1817–1821 (2005). CASPubMed Google Scholar
He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet.5, 522–531 (2004). CASPubMed Google Scholar
Kulshreshtha, R. et al. A microRNA signature of hypoxia. Mol. Cell. Biol.27, 1859–1867 (2006). PubMed Google Scholar
Hua, Z. et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE1, e116 (2006). PubMedPubMed Central Google Scholar
Crosby, M. E., Kulshreshtha, R., Ivan, M. & Glazer, P. M. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res.69, 1221–1229 (2009). CASPubMedPubMed Central Google Scholar
Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell128, 635–638 (2007). CASPubMed Google Scholar
Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol.14, 1025–1040 (2007). Google Scholar
Cloos, P. A. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature442, 307–311 (2006). CASPubMed Google Scholar
Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell125, 467–481 (2006). CASPubMed Google Scholar
Yamane, K. et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell125, 483–495 (2006). CASPubMed Google Scholar
Loenarz, C. & Schofield, C. J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chem. Biol.4, 152–156 (2008). CAS Google Scholar
Holmquist-Mengelbier, L. et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell10, 413–423 (2006). This paper shows distinct properties of HIF1α and HIF2α in acute and chronic hypoxia, respectively, and links HIF2α to tumour malignancy. CASPubMed Google Scholar
Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Mol. Cell. Biol.25, 5675–5686 (2005). CASPubMedPubMed Central Google Scholar
Koshiji, M. et al. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J.23, 1949–1956 (2004). CASPubMedPubMed Central Google Scholar
Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell11, 335–347 (2007). CASPubMedPubMed Central Google Scholar
Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev.21, 1037–1049 (2006). Google Scholar
Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L. & Bradfield, C. A. Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF3α. Gene Expr.7, 205–213 (1998). CASPubMed Google Scholar
Makino, Y. et al. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J. Biol. Chem.282, 14073–14082 (2007). CASPubMed Google Scholar
Tanaka, T., Wiesener, M. S., Bernhardt, W., Eckardt, K. U. & Warnecke, C. The human hypoxia-inducible factor (HIF)-3α gene is a HIF-1 target and may modulate hypoxic gene induction. Biochem. J. 21 Aug 2009 (doi:10.1042/BJ20090120). CAS Google Scholar
Makino, Y., Kanopka, A., Wilson, W. J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J. Biol. Chem.277, 32405–3 2408. Google Scholar
Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature414, 550–554 (2001). CASPubMed Google Scholar
Webby, C. J. et al. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science325, 90–93 (2009). This study establishes a role of a Jumonji-domain dioxygenase in regulation of splicing and provides a possible mode by which oxygen regulates this process. CASPubMed Google Scholar
Bilton, R., Trottier, E., Pouysségur, J. & Brahimi-Horn, M. C. ARDent about acetylation and deacetylation in hypoxia signalling. Trends Cell Biol.16, 616–621 (2006). CASPubMed Google Scholar
Dioum, E. M. et al. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science324, 1289–1293 (2009). This paper identifies a role of the environmental stress-inducible deacetylase SIRT1 in the regulation of HIFα function. CASPubMed Google Scholar
Yamamoto, H., Schoonjans, K. & Auwerx, J. Sirtuin functions in health and disease. Mol. Endocrinol.21, 1745–1755 (2007). CASPubMed Google Scholar
Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Rev. Mol. Cell Biol.9, 206–218 (2008). CAS Google Scholar
Hurlbut, G. D., Kankel, M. W., Lake, R. J. & Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol.19, 166–175 (2007). CASPubMed Google Scholar
Chitalia, V. C. et al. Jade-1 inhibits Wnt signalling by ubiquitylating β-catenin and mediates Wnt pathway inhibition by pVHL. Nature Cell Biol.10, 1208–1216.
Wouters, B. G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature Rev. Cancer8, 851–864 (2008). CAS Google Scholar
Ao, A., Wang, H., Kamarajugadda, S. & Lu, J. Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc. Natl Acad. Sci. USA105, 7821–7826 (2008). CASPubMedPubMed Central Google Scholar
Arany Z. et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature451, 1008–1012 (2008). This study describes the surprising finding that PGC1α induces VEGFA expression and angiogenesis not via the canonical hypoxia response pathway but via the orphan nuclear receptor ERRα. CASPubMed Google Scholar
Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature Rev. Mol. Cell Biol.6, 635–645 (2005). CAS Google Scholar
Koshiji, M. et al. HIF-1α induces genetic instability by transcriptionally downregulating MutSα expression. Mol. Cell17, 793–803 (2005). CASPubMed Google Scholar
Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell11, 407–420 (2007). CASPubMed Google Scholar
Löfstedt, T. et al. HIF-1α induces MXI1 by alternate promoter usage in human neuroblastoma cells. Exp. Cell Res.315, 1924–1936 (2009). PubMed Google Scholar
Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell80, 777–786 (1995). CASPubMed Google Scholar
Gordan, J. D. et al. HIF-α effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell14, 435–446 (2008). CASPubMedPubMed Central Google Scholar
Li, J. L. et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res.67, 11244–11253 (2007). CASPubMed Google Scholar
Diez, H. et al. Hypoxia-mediated activation of Dll4–Notch–Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. Exp. Cell Res.313, 1–9 (2007). CASPubMed Google Scholar
Sahlgren, C., Gustafsson, M. V., Jin, S., Poellinger, L. & Lendahl, U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc. Natl Acad. Sci USA105, 6392–6397 (2008). CASPubMedPubMed Central Google Scholar
Gustafsson, M. V. et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell9, 617–628 (2005). This paper provides a mechanism for how hypoxia impacts differentiation. CASPubMed Google Scholar
Bertout, J. A. et al. Heterozygosity for hypoxia inducible factor 1α decreases the incidence of thymic lymphomas in a p53 mutant mouse model. Cancer Res.69, 3213–3220 (2009). CASPubMedPubMed Central Google Scholar
Coleman, M. L. et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem.282, 24027–24038 (2007). CASPubMed Google Scholar
Zheng, X. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA105, 3368–3373 (2008). CASPubMedPubMed Central Google Scholar
Wilkins, S. E. et al. Differences in hydroxylation and binding of Notch and HIF-1α demonstrate substrate selectivity for factor inhibiting HIF-1 (FIH-1). Int. J. Biochem. Cell Biol.41, 1563–1571 (2009). CASPubMed Google Scholar
Cockman, M. E., Webb, J. D., Kramer, H. B., Kessler, B. M. & Ratcliffe, P. J. Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol. Cell. Proteomics8, 535–546 (2009). CASPubMedPubMed Central Google Scholar
Tien, A. C. et al. Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12–Notch repeats in Drosophila melanogaster. J. Cell Biol.182, 1113–1125 (2008). CASPubMedPubMed Central Google Scholar
Prasad, S. M. et al. Continuous hypoxic culturing maintains activation of Notch and allows long-term propagation of human embryonic stem cells without spontaneous differentiation. Cell Prolif.42, 63–74 (2009). CASPubMed Google Scholar
Jögi, A. et al. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc. Natl Acad. Sci. USA99, 7021–7026 (2002). PubMedPubMed Central Google Scholar
Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell30, 393–402 (2008). CASPubMed Google Scholar
Xie, L. et al. Oxygen-regulated β2-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL. Sci. Signal.2, ra33 (2009). This study identifies a substrate for PHDs that is distinct from the HIFα proteins. PubMedPubMed Central Google Scholar
Cook, K. M. et al. Epidithiodiketopiperazines block the interaction between hypoxia inducible factor-1α (HIF-1α) and p300 by a zinc ejection mechanism. J. Biol. Chem.284, 26831–26838 (2009). CASPubMedPubMed Central Google Scholar