Advances in understanding tissue regenerative capacity and mechanisms in animals (original) (raw)
Morgan, T. H. Experimental studies of the regeneration of Planaria maculata. Dev. Genes Evol.7, 364–397 (1898). Google Scholar
Reddien, P. W. & Sanchez Alvarado, A. Fundamentals of planarian regeneration. Annu. Rev. Cell Dev. Biol.20, 725–757 (2004). CASPubMed Google Scholar
Gierer, A. et al. Regeneration of hydra from reaggregated cells. Nature New Biol.239, 98–101 (1972). CASPubMed Google Scholar
Bosch, T. C. Why polyps regenerate and we don't: towards a cellular and molecular framework for Hydra regeneration. Dev. Biol.303, 421–433 (2007). CASPubMed Google Scholar
Garza-Garcia, A. A., Driscoll, P. C. & Brockes, J. P. Evidence for the local evolution of mechanisms underlying limb regeneration in salamanders. Integr. Comp. Biol. 21 Apr 2010 (doi:10.1093/icb/icq022). PubMed Google Scholar
Nechiporuk, A., Poss, K. D., Johnson, S. L. & Keating, M. T. Positional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration. Dev. Biol.258, 291–306 (2003). CASPubMed Google Scholar
Poss, K. D., Nechiporuk, A., Hillam, A. M., Johnson, S. L. & Keating, M. T. Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development129, 5141–5149 (2002). CASPubMed Google Scholar
Johnson, S. L. & Weston, J. A. Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration. Genetics141, 1583–1595 (1995). CASPubMedPubMed Central Google Scholar
Whitehead, G. G., Makino, S., Lien, C. L. & Keating, M. T. fgf20 is essential for initiating zebrafish fin regeneration. Science310, 1957–1960 (2005). This paper describes the positional cloning of a mutation infgf20athat disrupts zebrafish fin regeneration, delineating a key early signal in initiating regeneration. CASPubMed Google Scholar
Gonzalez-Quevedo, R., Lee, Y., Poss, K. D. & Wilkinson, D. G. Neuronal regulation of the spatial patterning of neurogenesis. Dev. Cell18, 136–147 (2010). CASPubMedPubMed Central Google Scholar
Ishida, T., Nakajima, T., Kudo, A. & Kawakami, A. Phosphorylation of Junb family proteins by the Jun N-terminal kinase supports tissue regeneration in zebrafish. Dev. Biol.340, 468–479 (2010). CASPubMed Google Scholar
Kallunki, T., Deng, T., Hibi, M. & Karin, M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell87, 929–939 (1996). CASPubMed Google Scholar
Yokoyama, H. et al. Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds. Dev. Biol.219, 18–29 (2000). CASPubMed Google Scholar
Beck, C. W., Christen, B. & Slack, J. M. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev. Cell5, 429–439 (2003). CASPubMed Google Scholar
Adams, D. S., Masi, A. & Levin, M. H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development134, 1323–1335 (2007). CASPubMed Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006). CASPubMed Google Scholar
Stewart, S., Tsun, Z. Y. & Izpisua Belmonte, J. C. A histone demethylase is necessary for regeneration in zebrafish. Proc. Natl Acad. Sci. USA106, 19889–19894 (2009). CASPubMedPubMed Central Google Scholar
Yin, V. P. et al. Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev.22, 728–733 (2008). CASPubMedPubMed Central Google Scholar
Yin, V. P. & Poss, K. D. New regulators of vertebrate appendage regeneration. Curr. Opin. Genet. Dev.18, 381–386 (2008). CASPubMedPubMed Central Google Scholar
Illingworth, C. M. Trapped fingers and amputated finger tips in children. J. Pediatr. Surg.9, 853–858 (1974). CASPubMed Google Scholar
Douglas, B. S. Conservative management of guillotine amputation of the finger in children. Aust. Paediatr. J.8, 86–89 (1972). CASPubMed Google Scholar
Reginelli, A. D., Wang, Y. Q., Sassoon, D. & Muneoka, K. Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development121, 1065–1076 (1995). CASPubMed Google Scholar
Borgens, R. B. Mice regrow the tips of their foretoes. Science217, 747–750 (1982). CASPubMed Google Scholar
Han, M., Yang, X., Farrington, J. E. & Muneoka, K. Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development130, 5123–5132 (2003). CASPubMed Google Scholar
Drenckhahn, J. D. et al. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev. Cell15, 521–533 (2008). CASPubMed Google Scholar
Schnapp, E., Kragl, M., Rubin, L. & Tanaka, E. M. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development132, 3243–3253 (2005). CASPubMed Google Scholar
Wills, A. A., Holdway, J. E., Major, R. J. & Poss, K. D. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development135, 183–192 (2008). CASPubMed Google Scholar
Wills, A. A., Kidd, A. R., Lepilina, A. & Poss, K. D. Fgfs control homeostatic regeneration in adult zebrafish fins. Development135, 3063–3070 (2008). CASPubMed Google Scholar
Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature443, 421–426 (2006). CASPubMed Google Scholar
Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature443, 453–457 (2006). CASPubMed Google Scholar
Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature443, 448–452 (2006). CASPubMedPubMed Central Google Scholar
Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature433, 760–764 (2005). This paper indicates that a circulating factor in young mice can increase the normally reduced regenerative capacity of skeletal muscle in old mice. CASPubMed Google Scholar
Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science317, 807–810 (2007). CASPubMed Google Scholar
Liu, H. et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science317, 803–806 (2007). CASPubMed Google Scholar
Reddien, P. W., Oviedo, N. J., Jennings, J. R., Jenkin, J. C. & Sanchez Alvarado, A. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science310, 1327–1330 (2005). CASPubMed Google Scholar
Guo, T., Peters, A. H. & Newmark, P. A. A Bruno-like gene is required for stem cell maintenance in planarians. Dev. Cell11, 159–169 (2006). CASPubMed Google Scholar
Newmark, P. A. & Sanchez Alvarado, A. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol.220, 142–153 (2000). CASPubMed Google Scholar
Baguna, J., Salo, E. & Auladell, C. Regeneration and pattern formation in planarians III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development107, 77–86 (1989). Google Scholar
Weissman, I. L. & Shizuru, J. A. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood112, 3543–3553 (2008). CASPubMedPubMed Central Google Scholar
Chao, M. P., Seita, J. & Weissman, I. L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb. Symp. Quant. Biol.73, 439–449 (2008). CASPubMed Google Scholar
Buckingham, M. & Montarras, D. Skeletal muscle stem cells. Curr. Opin. Genet. Dev.18, 330–336 (2008). CASPubMed Google Scholar
Tajbakhsh, S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J. Intern. Med.266, 372–389 (2009). CASPubMed Google Scholar
Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell102, 777–786 (2000). CASPubMed Google Scholar
Sacco, A., Doyonnas, R., Kraft, P., Vitorovic, S. & Blau, H. M. Self-renewal and expansion of single transplanted muscle stem cells. Nature456, 502–506 (2008). CASPubMedPubMed Central Google Scholar
Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell134, 37–47 (2008). CASPubMedPubMed Central Google Scholar
Driesch, H. Studien über das regulations vermögen der Organismen. 6. Die restitution der Clavellina lepadiformis. Arch. Entw. Mech.14, 247–287 (1902). Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). CASPubMed Google Scholar
Brawley, C. & Matunis, E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science304, 1331–1334 (2004). CASPubMed Google Scholar
Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E. & Yoshida, S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science328, 62–67 (2010). CASPubMedPubMed Central Google Scholar
Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science298, 2188–2190 (2002). This paper identifies heart regeneration in adult zebrafish and introduces this system as a new means to discover factors that block or enhance cardiac regeneration. CASPubMed Google Scholar
Jopling, C. et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature464, 606–609 (2010). CASPubMedPubMed Central Google Scholar
Kikuchi, K. et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature464, 601–605 (2010). CASPubMedPubMed Central Google Scholar
Grogg, M. W. et al. BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature438, 858–862 (2005). CASPubMedPubMed Central Google Scholar
Eguchi, G., Abe, S. I. & Watanabe, K. Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc. Natl Acad. Sci. USA71, 5052–5056 (1974). CASPubMedPubMed Central Google Scholar
Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature464, 1149–1154 (2010). CASPubMedPubMed Central Google Scholar
Brockes, J. P. & Kumar, A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science310, 1919–1923 (2005). CASPubMed Google Scholar
Dinsmore, C. A History of Regeneration Research (Cambridge Univ. Press, Cambridge, UK, 1991). Google Scholar
Lo, D. C., Allen, F. & Brockes, J. P. Reversal of muscle differentiation during urodele limb regeneration. Proc. Natl Acad. Sci. USA90, 7230–7234 (1993). CASPubMedPubMed Central Google Scholar
Kumar, A., Velloso, C. P., Imokawa, Y. & Brockes, J. P. The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1. PLoS Biol.2, e218 (2004). PubMedPubMed Central Google Scholar
Morrison, J. I., Loof, S., He, P. & Simon, A. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J. Cell Biol.172, 433–440 (2006). CASPubMedPubMed Central Google Scholar
Sobkow, L., Epperlein, H. H., Herklotz, S., Straube, W. L. & Tanaka, E. M. A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev. Biol.290, 386–397 (2006). CASPubMed Google Scholar
Kragl, M. et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature460, 60–65 (2009). This paper uses transgenic salamanders to provide evidence that the axolotl limb blastema is comprised of a heterogeneous population of lineage-restricted cells. CASPubMed Google Scholar
Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature455, 627–632 (2008). CASPubMedPubMed Central Google Scholar
Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell142, 375–386 (2010). CASPubMedPubMed Central Google Scholar
Maki, N. et al. Expression of stem cell pluripotency factors during regeneration in newts. Dev. Dyn.238, 1613–1616 (2009). CASPubMedPubMed Central Google Scholar
Dor, Y., Brown, J., Martinez, O. I. & Melton, D. A. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature429, 41–46 (2004). CASPubMed Google Scholar
Taub, R. Liver regeneration: from myth to mechanism. Nature Rev. Mol. Cell Biol.5, 836–847 (2004). CAS Google Scholar
Xu, X. et al. β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell132, 197–207 (2008). CASPubMed Google Scholar
Fausto, N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology39, 1477–1487 (2004). PubMed Google Scholar
Zeller, R., Lopez-Rios, J. & Zuniga, A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nature Rev. Genet.10, 845–858 (2009). CASPubMed Google Scholar
Stoick-Cooper, C. L., Moon, R. T. & Weidinger, G. Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev.21, 1292–1315 (2007). CASPubMed Google Scholar
Jazwinska, A., Badakov, R. & Keating, M. T. Activin-βA signaling is required for zebrafish fin regeneration. Curr. Biol.17, 1390–1395 (2007). CASPubMed Google Scholar
Stoick-Cooper, C. L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development134, 479–489 (2007). CASPubMed Google Scholar
Kawakami, Y. et al. Wnt/β-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 17 Nov 2006 (doi:10.1101/gad.1475106). CAS Google Scholar
Pellettieri, J. et al. Cell death and tissue remodeling in planarian regeneration. Dev. Biol.338, 76–85 (2010). CASPubMed Google Scholar
Tseng, A. S., Adams, D. S., Qiu, D., Koustubhan, P. & Levin, M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev. Biol.301, 62–69 (2007). CASPubMed Google Scholar
Chera, S. et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive Hydra head regeneration. Dev. Cell17, 279–289 (2009). This paper indicates a mechanism by which head amputation triggers apoptosis and concomitant Wnt3 release from these apoptotic cells, stimulating animal regeneration. CASPubMed Google Scholar
Jiang, H. et al. Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell137, 1343–1355 (2009). This paper describes an elegant mechanism for regeneration of the midgut epithelial tissue inD. melanogaster, in which stressed or dying cells stimulate stem cell activity and tissue regeneration. PubMedPubMed Central Google Scholar
Lengfeld, T. et al. Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev. Biol.330, 186–199 (2009). CASPubMed Google Scholar
van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neurosci.2, 266–270 (1999). CASPubMed Google Scholar
Lepilina, A. et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell127, 607–619 (2006). CASPubMed Google Scholar
Kirby, B. S., Bryant, P. J. & Schneiderman, H. A. Regeneration following duplication of imaginal wing disc fragments of Drosophila melanogaster. Dev. Biol.90, 259–271 (1982). CASPubMed Google Scholar
Bryant, P. J. Regeneration and duplication in imaginal discs. Ciba Found. Symp.0, 71–93 (1975). CASPubMed Google Scholar
Bryant, P. J. Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication. J. Exp. Zool.193, 49–77 (1975). CASPubMed Google Scholar
Smith-Bolton, R. K., Worley, M. I., Kanda, H. & Hariharan, I. K. Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev. Cell16, 797–809 (2009). CASPubMedPubMed Central Google Scholar
Simpson, P., Berreur, P. & Berreur-Bonnenfant, J. The initiation of pupariation in Drosophila: dependence on growth of the imaginal discs. J. Embryol. Exp. Morphol.57, 155–165 (1980). CASPubMed Google Scholar
Hussey, R. G., Thompson, W. R. & Calhoun, E. T. The influence of x-rays on the development of Drosophila larvae. Science66, 65–66 (1927). CASPubMed Google Scholar
Halme, A., Cheng, M. & Hariharan, I. K. Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr. Biol.20, 458–463 (2010). CASPubMedPubMed Central Google Scholar
Kumar, A., Godwin, J. W., Gates, P. B., Garza-Garcia, A. A. & Brockes, J. P. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science318, 772–777 (2007). This study identified newt anterior gradient as a blastemal mitogen released from nerves, giving an explanation for the reliance of amphibian limb regeneration on innervation. CASPubMedPubMed Central Google Scholar
French, V. Pattern regulation and regeneration. Philos. Trans. R. Soc. Lond. B295, 601–617 (1981). CAS Google Scholar
Wolpert, L. Positional information and pattern formation. Curr. Top. Dev. Biol.6, 183–224 (1971). CASPubMed Google Scholar
Wolpert, L. One hundred years of positional information. Trends Genet.12, 359–364 (1996). CASPubMed Google Scholar
Wolpert, L. Positional information revisited. Development107, 3–12 (1989). PubMed Google Scholar
French, V., Bryant, P. J. & Bryant, S. V. Pattern regulation in epimorphic fields. Science193, 969–981 (1976). CASPubMed Google Scholar
Baker, N. E. Patterning signals and proliferation in Drosophila imaginal discs. Curr. Opin. Genet. Dev.17, 287–293 (2007). CASPubMed Google Scholar
Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W. & Tank, D. W. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell130, 141–152 (2007). CASPubMedPubMed Central Google Scholar
Rogulja, D. & Irvine, K. D. Regulation of cell proliferation by a morphogen gradient. Cell123, 449–461 (2005). CASPubMed Google Scholar
Piddini, E. & Vincent, J. P. Interpretation of the wingless gradient requires signaling-induced self-inhibition. Cell136, 296–307 (2009). CASPubMed Google Scholar
Maden, M. Vitamin A and pattern formation in the regenerating limb. Nature295, 672–675 (1982). CASPubMed Google Scholar
da Silva, S. M., Gates, P. B. & Brockes, J. P. The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev. Cell3, 547–555 (2002). CASPubMed Google Scholar
Kumar, A., Gates, P. B. & Brockes, J. P. Positional identity of adult stem cells in salamander limb regeneration. C. R. Biol.330, 485–490 (2007). CASPubMed Google Scholar
Echeverri, K. & Tanaka, E. M. Proximodistal patterning during limb regeneration. Dev. Biol.279, 391–401 (2005). CASPubMed Google Scholar
Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA99, 12877–12882 (2002). CASPubMedPubMed Central Google Scholar
Leucht, P. et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development135, 2845–2854 (2008). CASPubMed Google Scholar
Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science317, 381–384 (2007). CASPubMed Google Scholar
Petersen, C. P. & Reddien, P. W. A wound-induced Wnt expression program controls planarian regeneration polarity. Proc. Natl Acad. Sci. USA106, 17061–17066 (2009). CASPubMedPubMed Central Google Scholar
Reddien, P. W., Bermange, A. L., Kicza, A. M. & Sanchez Alvarado, A. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development134, 4043–4051 (2007). CASPubMed Google Scholar
Petersen, C. P. & Reddien, P. W. Smed-βcatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science319, 327–330 (2008). CASPubMed Google Scholar
Gurley, K. A., Rink, J. C. & Sanchez Alvarado, A. β-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science319, 323–327 (2008). CASPubMed Google Scholar
Cebria, F., Guo, T., Jopek, J. & Newmark, P. A. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev. Biol.307, 394–406 (2007). CASPubMedPubMed Central Google Scholar
Nicolas, S., Papillon, D., Perez, Y., Caubit, X. & Le Parco, Y. The spatial restrictions of 5'HoxC genes expression are maintained in adult newt spinal cord. Biol. Cell95, 589–594 (2003). CASPubMed Google Scholar
Reddien, P. W., Bermange, A. L., Murfitt, K. J., Jennings, J. R. & Sanchez Alvarado, A. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev. Cell8, 635–649 (2005). This study used a powerful, large-scale RNAi approach to systematically explore gene requirements during planarian regeneration CASPubMedPubMed Central Google Scholar
Thummel, R. et al. Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev. Dyn.235, 336–346 (2006). CASPubMed Google Scholar
Mercader, N., Tanaka, E. M. & Torres, M. Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development132, 4131–4142 (2005). CASPubMed Google Scholar