Long non-coding RNAs: new players in cell differentiation and development (original) (raw)
Maeda, N. et al. Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet.2, e62 (2006). PubMedPubMed Central Google Scholar
Taft, R. J., Pheasant, M. & Mattick, J. S. The relationship between nonprotein-coding DNA and eukaryotic complexity. Bioessays29, 288–299 (2007). CASPubMed Google Scholar
Mattick, J. S. & Makunin, I. V. Non-coding RNA. Hum. Mol. Genet.1, 17–29 (2006). Google Scholar
Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem.8, 145–166 (2012). Google Scholar
Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res.22, 1775–1789 (2012). CASPubMedPubMed Central Google Scholar
Batista, P. J. & Chang, H. Y. Long noncoding RNAs: cellular address codes in development and disease. Cell152, 1298–1307 (2013). CASPubMedPubMed Central Google Scholar
Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA101, 10024–10029 (2004). CASPubMedPubMed Central Google Scholar
Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nature Genet.30, 167–174 (2002). CASPubMed Google Scholar
Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science329, 689–693 (2010). CASPubMedPubMed Central Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). CASPubMedPubMed Central Google Scholar
Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature477, 295–300 (2011). This study reports an exhaustive identification and characterization of lncRNAs that are involved in the control of pluripotency and differentiation. CASPubMedPubMed Central Google Scholar
Ng, S. Y., Johnson, R. & Stanton, L. W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J.31, 522–533 (2012). This paper characterizes several lncRNAs that are involved in the control of pluripotency and neural differentiation; examples of lncRNAs that interact with multiple transcriptional modulators were found, which supports the modular scaffold hypothesis. CASPubMed Google Scholar
Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F. & Mattick, J. S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl Acad. Sci. USA105, 716–721 (2008). CASPubMedPubMed Central Google Scholar
Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev.25, 1915–1927 (2011). CASPubMedPubMed Central Google Scholar
Pauli, A. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res.22, 577–591 (2012). CASPubMedPubMed Central Google Scholar
Kelley, D. & Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol.13, R107 (2012). PubMedPubMed Central Google Scholar
Liang, Q., Xu, Z., Xu, R., Wu, L. & Zheng, S. Expression patterns of non-coding spliced transcripts from human endogenous retrovirus HERV-H elements in colon cancer. PLoS ONE7, e29950 (2012). CASPubMedPubMed Central Google Scholar
Kapusta, A. et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet.9, e1003470 (2013). CASPubMedPubMed Central Google Scholar
Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147, 358–369 (2011). This paper describes a lncRNA that controls the translation of late myogenic factors and the progression to late differentiation stages through competition for common miRNAs. CASPubMedPubMed Central Google Scholar
Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell149, 515–524 (2012). CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell25, 69–80 (2013). This paper describes a lncRNA that controls the expression of core pluripotency transcriptional factors by competing for common miRNAs. CASPubMed Google Scholar
Khalil, A. M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA106, 11667–11672 (2009). CASPubMedPubMed Central Google Scholar
Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science322, 750–756 (2008). CASPubMedPubMed Central Google Scholar
Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science322, 1717–1720 (2008). CASPubMed Google Scholar
Pandey, R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell32, 232–246 (2008). CASPubMed Google Scholar
Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature445, 666–670 (2007). CASPubMed Google Scholar
Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science338, 1469–1472 (2012). CASPubMed Google Scholar
Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature472, 120–124 (2011). CASPubMedPubMed Central Google Scholar
Bertani, S., Sauer, S., Bolotin, E. & Sauer, F. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell43, 1040–1046 (2011). CASPubMedPubMed Central Google Scholar
Ørom, U. A. et al. Long noncoding RNAs with enhancer-like function in human cells. Cell143, 46–58 (2010). PubMedPubMed Central Google Scholar
Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature498, 516–520 (2013). CASPubMedPubMed Central Google Scholar
Schmitz, K. M., Mayer, C., Postepska, A. & Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev.24, 2264–2269 (2010). CASPubMedPubMed Central Google Scholar
Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol. Cell44, 667–678 (2011). CASPubMedPubMed Central Google Scholar
Hung, T. et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genet.43, 621–629 (2011). CASPubMed Google Scholar
Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature454, 126–130 (2008). CASPubMedPubMed Central Google Scholar
Yang, L. et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell147, 773–788 (2011). CASPubMedPubMed Central Google Scholar
Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science341, 1237973 (2013). PubMedPubMed Central Google Scholar
Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature491, 454–457 (2012). This study shows that a brain-specific lncRNA activates translation of an antisense mRNA through an embedded repetitive element. CASPubMed Google Scholar
Faghihi, M. A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of β-secretase. Nature Med.14, 723–730 (2008). CASPubMed Google Scholar
Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature493, 231–235 (2013). This paper shows that STAU1 can be tethered by a lncRNA on specific target mRNAs that share a 25-nucleotide conserved box. However, different from STAU1-mediated decay, such tethering confers stability on the target mRNAs. CASPubMed Google Scholar
Gong, C. & Maquat, L. E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature470, 284–288 (2011). CASPubMedPubMed Central Google Scholar
Wang, J., Gong, C. & Maquat, L. E. Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev.27, 793–804 (2013). CASPubMedPubMed Central Google Scholar
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. The ceRNA hypothesis: the Rosetta stone of a hidden RNA language. Cell146, 353–358 (2011). CASPubMedPubMed Central Google Scholar
Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet.39, 1033–1037 (2007). CASPubMed Google Scholar
Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature465, 1033–1038 (2010). This paper proposes the ceRNA hypothesis, in which coding and non-coding RNAs can crosstalk through competition for shared miRNA-binding motifs. CASPubMedPubMed Central Google Scholar
Karreth, F. A. et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell147, 382–395 (2011). CASPubMedPubMed Central Google Scholar
Sumazin, P. et al. An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell147, 370–381 (2011). CASPubMedPubMed Central Google Scholar
Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J.30, 4414–4422 (2011). CASPubMedPubMed Central Google Scholar
Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature495, 384–388 (2013). CASPubMed Google Scholar
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature495, 333–338 (2013). This paper identifies a large class of cellular circRNAs; for one of these, a ceRNA function is shown in the control of neuronal functions. CASPubMed Google Scholar
Lee, J. T. & Bartolomei, M. S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell152, 1308–1323 (2013). CASPubMed Google Scholar
Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature379, 131–137 (1996). CASPubMed Google Scholar
Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J.25, 3110–3122 (2006). CASPubMedPubMed Central Google Scholar
Nozawa, R. S. et al. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nature Struct. Mol. Biol.20, 566–573 (2013). CAS Google Scholar
Lee, J. T. Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell103, 17–27 (2000). CASPubMed Google Scholar
Sado, T., Wang, Z., Sasaki, H. & Li, E. Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development128, 1275–1286 (2001). CASPubMed Google Scholar
Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell143, 390–403 (2010). CASPubMedPubMed Central Google Scholar
Yildirim, E. et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell152, 727–742 (2013). CASPubMed Google Scholar
Fitzpatrick, G. V., Soloway, P. D. & Higgins, M. J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nature Genet.32, 426–431 (2002). CASPubMed Google Scholar
Sleutels, F., Zwart, R. & Barlow, D. P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature415, 810–813 (2002). CASPubMed Google Scholar
Mancini-Dinardo, D., Steele, S. J., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev.20, 1268–1282 (2006). CASPubMedPubMed Central Google Scholar
Colin, J., Libri, D. & Porrua, O. Cryptic transcription and early termination in the control of gene expression. Genet. Res. Int.2011, 653494 (2011). PubMedPubMed Central Google Scholar
Barber, B. A. & Rastegar, M. Epigenetic control of Hox genes during neurogenesis, development, and disease. Ann. Anat.192, 261–274 (2010). CASPubMed Google Scholar
Kostic, D. & Capecchi, M. R. Targeted disruptions of the murine Hoxa-4 and Hoxa-6 genes result in homeotic transformations of components of the vertebral column. Mech. Dev.46, 231–247 (1994). CASPubMed Google Scholar
Zhang, X. et al. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood113, 2526–2534 (2009). CASPubMedPubMed Central Google Scholar
Maamar, H., Cabili, M.N., Rinn, J. & Raj, A. linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev.27, 1260–1271 (2013). CASPubMedPubMed Central Google Scholar
Li, L. et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep.5, 3–12 (2013). CASPubMedPubMed Central Google Scholar
Suemori, H. & Noguchi, S. Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev. Biol.220, 333–342 (2000). CASPubMed Google Scholar
Schorderet, P. & Duboule, D. Structural and functional differences in the long non-coding RNA Hotair in mouse and human. PLoS Genet.7, e1002071 (2011). CASPubMedPubMed Central Google Scholar
Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464, 1071–1076 (2010). CASPubMedPubMed Central Google Scholar
Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genet.42, 1113–1117 (2010). CASPubMed Google Scholar
Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature458, 223–227 (2009). CASPubMedPubMed Central Google Scholar
Dinger, M. E. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res.9, 1433–1445 (2008). Google Scholar
Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P. & Lipovich, L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA16, 324–337 (2010). PubMedPubMed Central Google Scholar
Qureshi, I. A. & Mehler, M. F. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nature Rev. Neurosci.13, 528–541 (2012). CAS Google Scholar
Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J.29, 3082–3093 (2010). CASPubMedPubMed Central Google Scholar
Zhang, B. et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a _cis_-regulatory role in the adult. Cell Rep.2, 111–123 (2012). CASPubMedPubMed Central Google Scholar
Gutschner, T. et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res.73, 1180–1189 (2013). CASPubMed Google Scholar
Ramos, A. D. et al. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell.12, 616–628 (2013). CASPubMedPubMed Central Google Scholar
Xu, A. G. et al. Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-seq. PLoS Comput. Biol.6, e1000843 (2010). PubMedPubMed Central Google Scholar
Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature443, 167–172 (2006). CASPubMed Google Scholar
Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature478, 476–482 (2011). CASPubMedPubMed Central Google Scholar
Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell119, 1027–1040 (2004). CASPubMed Google Scholar
Amaral, P. P. et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA11, 2013–2027 (2009). Google Scholar
Feng, J. et al. The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a _Dlx_-2 transcriptional coactivator. Genes Dev.20, 1470–1484 (2006). CASPubMedPubMed Central Google Scholar
Bond, A. M. et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neurosci.12, 1020–1027 (2009). CASPubMed Google Scholar
Kraus, P. et al. Making sense of Dlx1 antisense RNA. Dev. Biol.376, 224–235 (2013). CASPubMed Google Scholar
Le, M. T. et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol.29, 5290–5305 (2009). CASPubMedPubMed Central Google Scholar
Klattenhoff, C. A. et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell152, 1–14 (2013). Google Scholar
Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell24, 206–214 (2013). References 94 and 95 highlight the importance of lncRNAs during lineage commitment and in providing a new layer of regulation that is involved in determining cardiac cell fate. CASPubMedPubMed Central Google Scholar
Twayana, S. et al. Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy. Bioch. Soc. Trans.41, 844–849 (2013). CAS Google Scholar
Kallen, A. N. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell52, 101–112 (2013). CASPubMed Google Scholar
Cabianca, D. S. et al. A long ncRNA links copy number variation to a Polycomb/Trithorax epigenetic switch in FSHD muscular dystrophy. Cell149, 819–831 (2012). CASPubMedPubMed Central Google Scholar
Hu, W., Yuan, B., Flygare, J. & Lodish, H. F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev.25, 2573–2578 (2011). CASPubMedPubMed Central Google Scholar
Ietswaart, R., Wu, Z. & Dean, C. Flowering time control: another window to the connection between antisense RNA and chromatin. Trends Genet.28, 445–453 (2012). CASPubMed Google Scholar
Heo, J. B. & Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science331, 76–79 (2011). CASPubMed Google Scholar
Liu, F. et al. The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC. Mol. Cell28, 398–407 (2007). PubMed Google Scholar
Liu, F., Marquardt, S., Lister, C., Swiezewski, S. & Dean, C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science327, 94–97 (2010). CASPubMed Google Scholar
Sun, Q., Csorba, T., Skourti-Stathaki, K., Proudfoot, N. J. & Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science340, 619–621 (2013). CASPubMedPubMed Central Google Scholar
Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell33, 717–726 (2009). CASPubMedPubMed Central Google Scholar
Nesterova, T. B. et al. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res.11, 833–849 (2001). CASPubMedPubMed Central Google Scholar
Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protoc.7, 1534–1550 (2012). CAS Google Scholar
Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S. & Lander, E. S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell154, 240–251 (2013). CASPubMedPubMed Central Google Scholar
Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell147, 1537–1550 (2011). CASPubMedPubMed Central Google Scholar
Ohhata, T., Hoki, Y., Sasaki, H. & Sado, T. Crucial role of antisense transcription across the Xist promoter in _Tsix_-mediated Xist chromatin modification. Development135, 227–235 (2008). CASPubMed Google Scholar
Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science270, 484–487 (1995). CASPubMed Google Scholar
Wei, C. L. et al. 5′ long serial analysis of gene expression (LongSAGE) and 3′ LongSAGE for transcriptome characterization and genome annotation. Proc. Natl Acad. Sci. USA101, 11701–11706 (2004). CASPubMedPubMed Central Google Scholar
Matsumura, H., Krüger, D. H., Kahl, G. & Terauchi, R. SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr. Pharm. Biotechnol.9, 368–374 (2008). CASPubMed Google Scholar
Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA100, 15776–15781 (2003). CASPubMedPubMed Central Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods5, 621–628 (2008). CASPubMed Google Scholar
Wahl, M. C., Will, C. L. & Lührmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell136, 701–718 (2009). CASPubMed Google Scholar
Kiss, T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell109, 145–148 (2002). CASPubMed Google Scholar
Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature455, 1124–1128 (2008). CASPubMed Google Scholar
Melton, C., Judson, R. L. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature463, 621–626 (2010). CASPubMedPubMed Central Google Scholar
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005). CASPubMedPubMed Central Google Scholar
Buckingham, M. & Vincent, S. D. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr. Opin. Genet. Dev.19, 444–453 (2009). CASPubMed Google Scholar
Marrone, A. K. & Shcherbata, H. R. Dystrophin orchestrates the epigenetic profile of muscle cells via miRNAs. Front. Genet.2, 64–72 (2011). PubMedPubMed Central Google Scholar
Cacchiarelli, D. et al. miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Rep.12, 136–141 (2011). CASPubMedPubMed Central Google Scholar
Rapicavoli, N. A., Poth, E. M. & Blackshaw, S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev. Biol.10, 49 (2010). PubMedPubMed Central Google Scholar
Rapicavoli, N. A., Poth, E. M., Zhu, H. & Blackshaw, S. The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev.6, 32 (2011). CASPubMedPubMed Central Google Scholar
Young, T. L., Matsuda, T. & Cepko, C. L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Curr. Biol.15, 501–512 (2005). CASPubMed Google Scholar
Meola, N., Pizzo, M., Alfano, G., Surace, E. M. & Banfi, S. The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA18, 111–123 (2012). CASPubMedPubMed Central Google Scholar