Non-viral vectors for gene-based therapy (original) (raw)
Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R. & Wixon, J. Gene therapy clinical trials worldwide to 2012 — an update. J. Gene Med.15, 65–77 (2013). CASPubMed Google Scholar
Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nature Rev. Genet.12, 316–328 (2011). CASPubMed Google Scholar
Mingozzi, F. & High, K. A. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nature Rev. Genet.12, 341–355 (2011). CASPubMed Google Scholar
Baum, C., Kustikova, O., Modlich, U., Li, Z. & Fehse, B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther.17, 253–263 (2006). CASPubMed Google Scholar
Bessis, N., GarciaCozar, F. J. & Boissier, M. C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther.11 (Suppl. 1), S10–S17 (2004). CASPubMed Google Scholar
Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nature Rev. Genet.8, 573–587 (2007). CASPubMed Google Scholar
Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet.4, 346–358 (2003). CASPubMed Google Scholar
Bouard, D., Alazard-Dany, D. & Cosset, F. L. Viral vectors: from virology to transgene expression. Br. J. Pharmacol.157, 153–165 (2009). CASPubMedPubMed Central Google Scholar
Pack, D. W., Hoffman, A. S., Pun, S. & Stayton, P. S. Design and development of polymers for gene delivery. Nature Rev. Drug Discov.4, 581–593 (2005). CAS Google Scholar
Mintzer, M. A. & Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev.109, 259–302 (2009). CASPubMed Google Scholar
Putnam, D. Polymers for gene delivery across length scales. Nature Mater.5, 439–451 (2006). CAS Google Scholar
Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharmaceut.6, 659–668 (2009). CAS Google Scholar
Gonzalez, H., Hwang, S. J. & Davis, M. E. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem.10, 1068–1074 (1999). CASPubMed Google Scholar
Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nature Biotech.28, 172–176 (2010). This study carries out a rational design of a siRNA delivery vector and achieved significant improvement in delivery efficiency. CAS Google Scholar
Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107, 1864–1869 (2010). CASPubMed Google Scholar
Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnol.7, 779–786 (2012). CAS Google Scholar
Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnol.7, 389–393 (2012). CAS Google Scholar
Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity23, 165–175 (2005). CASPubMed Google Scholar
Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res.39, 9329–9338 (2011). CASPubMedPubMed Central Google Scholar
Kariko, K., Muramatsu, H., Keller, J. M. & Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther.20, 948–953 (2012). CASPubMedPubMed Central Google Scholar
Deleavey, G. F., Watts, J. K. & Damha, M. J. Chemical modification of siRNA. Curr. Protoc. Nucleic Acid Chem.39, 16.3.1–16.3.22 (2009). Google Scholar
Mehier-Humbert, S. & Guy, R. H. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev.57, 733–753 (2005). CASPubMed Google Scholar
Wells, D. J. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther.11, 1363–1369 (2004). CASPubMed Google Scholar
Newman, C. M. & Bettinger, T. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther.14, 465–475 (2007). CASPubMed Google Scholar
Plank, C. et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem.384, 737–747 (2003). CASPubMed Google Scholar
Zhang, G., Budker, V. G., Ludtke, J. J. & Wolff, J. A. Naked DNA gene transfer in mammalian cells. Methods Mol. Biol.245, 251–264 (2004). CASPubMed Google Scholar
Li, W. & Szoka, F. C. Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res.24, 438–449 (2007). PubMed Google Scholar
Thomas, M. & Klibanov, A. M. Non-viral gene therapy: polycation-mediated DNA delivery. Appl. Microbiol. Biotechnol.62, 27–34 (2003). CASPubMed Google Scholar
Lee, C. C., MacKay, J. A., Frechet, J. M. & Szoka, F. C. Designing dendrimers for biological applications. Nature Biotech.23, 1517–1526 (2005). CAS Google Scholar
Discher, D. E. & Ahmed, F. Polymersomes. Annu. Rev. Biomed. Engineer.8, 323–341 (2006). CAS Google Scholar
Sokolova, V. & Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed. Engl.47, 1382–1395 (2008). CASPubMed Google Scholar
Kawabata, K., Takakura, Y. & Hashida, M. The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm. Res.12, 825–830 (1995). CASPubMed Google Scholar
McManus, J. J., Radler, J. O. & Dawson, K. A. Observation of a rectangular columnar phase in a DNA–calcium–zwitterionic lipid complex. J. Am. Chem. Soc.126, 15966–15967 (2004). CASPubMed Google Scholar
McManus, J. J., Rädler, J. O. & Dawson, K. A. Does calcium turn a zwitterionic lipid cationic? J. Phys. Chem. B107, 9869–9875 (2003). CAS Google Scholar
Koltover, I., Salditt, T., Radler, J. O. & Safinya, C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science281, 78–81 (1998). This paper elucidates structural considerations involved in the endosomal escape of DNA mediated by liposomal nanoparticles. CASPubMed Google Scholar
Wiethoff, C. M. & Middaugh, C. R. Barriers to nonviral gene delivery. J. Pharm. Sci.92, 203–217 (2003). CASPubMed Google Scholar
Morille, M., Passirani, C., Vonarbourg, A., Clavreul, A. & Benoit, J. P. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials29, 3477–3496 (2008). CASPubMed Google Scholar
Capecchi, M. R. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell22, 479–488 (1980). CASPubMed Google Scholar
Miller, A. M. & Dean, D. A. Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv. Drug Deliv. Rev.61, 603–613 (2009). CASPubMed Google Scholar
Varga, C. M. et al. Quantitative comparison of polyethylenimine formulations and adenoviral vectors in terms of intracellular gene delivery processes. Gene Ther.12, 1023–1032 (2005). CASPubMed Google Scholar
Dinh, A. T., Pangarkar, C., Theofanous, T. & Mitragotri, S. Understanding intracellular transport processes pertinent to synthetic gene delivery via stochastic simulations and sensitivity analyses. Biophys. J.92, 831–846 (2007). CASPubMed Google Scholar
Wasungu, L. & Hoekstra, D. Cationic lipids, lipoplexes and intracellular delivery of genes. J. Control. Release116, 255–264 (2006). CASPubMed Google Scholar
Godbey, W. T., Wu, K. K. & Mikos, A. G. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl Acad. Sci. USA96, 5177–5181 (1999). CASPubMed Google Scholar
Breunig, M. et al. Gene delivery with low molecular weight linear polyethylenimines. J. Gene Med.7, 1287–1298 (2005). CASPubMed Google Scholar
Schaffer, D. V., Fidelman, N. A., Dan, N. & Lauffenburger, D. A. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng.67, 598–606 (2000). CASPubMed Google Scholar
Cohen, R. N., van der Aa, M. A., Macaraeg, N., Lee, A. P. & Szoka, F. C. Jr. Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J. Controlled Release135, 166–174 (2009). CAS Google Scholar
Gill, D. R., Pringle, I. A. & Hyde, S. C. Progress and prospects: the design and production of plasmid vectors. Gene Ther.16, 165–171 (2009). CASPubMed Google Scholar
Gill, D. R. et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1α promoter. Gene Ther.8, 1539–1546 (2001). CASPubMed Google Scholar
Wooddell, C. I., Reppen, T., Wolff, J. A. & Herweijer, H. Sustained liver-specific transgene expression from the albumin promoter in mice following hydrodynamic plasmid DNA delivery. J. Gene Med.10, 551–563 (2008). CASPubMed Google Scholar
Miao, C. H. et al. Inclusion of the hepatic locus control region, an intron, and untranslated region increases and stabilizes hepatic factor IX gene expression in vivo but not in vitro. Mol. Ther.1, 522–532 (2000). CASPubMed Google Scholar
Argyros, O. et al. Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther.15, 1593–1605 (2008). CASPubMed Google Scholar
Kreiss, P. et al. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res.27, 3792–3798 (1999). CASPubMedPubMed Central Google Scholar
Darquet, A. M. et al. Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther.6, 209–218 (1999). CASPubMed Google Scholar
Kay, M. A., He, C. Y. & Chen, Z. Y. A robust system for production of minicircle DNA vectors. Nature Biotech.28, 1287–1289 (2010). CAS Google Scholar
Ehrhardt, A., Xu, H., Huang, Z., Engler, J. A. & Kay, M. A. A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase phiC31 and the Sleeping Beauty transposase. Mol. Ther.11, 695–706 (2005). CASPubMed Google Scholar
Wu, S. C. et al. PiggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl Acad. Sci. USA103, 15008–15013 (2006). CASPubMed Google Scholar
Aronovich, E. L., McIvor, R. S. & Hackett, P. B. The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum. Mol. Genet.20, R14–R20 (2011). CASPubMedPubMed Central Google Scholar
Fraley, R., Subramani, S., Berg, P. & Papahadjopoulos, D. Introduction of liposome-encapsulated SV40 DNA into cells. J. Biol. Chem.255, 10431–10435 (1980). CASPubMed Google Scholar
Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA84, 7413–7417 (1987). References 59 and 60 are the earliest studies to show lipid-mediated DNA deliveryin vitro. CASPubMed Google Scholar
Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nature Rev. Drug Discov.8, 129–138 (2009). CAS Google Scholar
Lonez, C., Vandenbranden, M. & Ruysschaert, J. M. Cationic liposomal lipids: from gene carriers to cell signaling. Prog. Lipid Res.47, 340–347 (2008). CASPubMed Google Scholar
Hersey, P. & Gallagher, S. Intralesional immunotherapy for melanoma. J. Surg. Oncol.109, 320–326 (2014). CASPubMed Google Scholar
Olins, D. E., Olins, A. L. & Von Hippel, P. H. Model nucleoprotein complexes: studies on the interaction of cationic homopolypeptides with DNA. J. Mol. Biol.24, 157–176 (1967). CASPubMed Google Scholar
Laemmli, U. K. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc. Natl Acad. Sci. USA72, 4288–4292 (1975). CASPubMed Google Scholar
Wu, G. Y. & Wu, C. H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem.262, 4429–4432 (1987). CASPubMed Google Scholar
Wu, G. Y. & Wu, C. H. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem.263, 14621–14624 (1988). References 66 and 67 are among the first to investigate the possibility of targeted non-viral nucleic acid deliveryin vitroandin vivo. CASPubMed Google Scholar
Choi, Y. H. et al. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J. Control. Release54, 39–48 (1998). PubMed Google Scholar
Kim, S. W. Polylysine copolymers for gene delivery. Cold Spring Harb.Protoc.2012, 433–438 (2012). PubMed Google Scholar
Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm.5, 505–515 (2008). CASPubMedPubMed Central Google Scholar
Bazile, D. et al. Stealth Me. PEG–PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci.84, 493–498 (1995). CASPubMed Google Scholar
Konstan, M. W. et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum. Gene Ther.15, 1255–1269 (2004). CASPubMed Google Scholar
Lungwitz, U., Breunig, M., Blunk, T. & Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm.60, 247–266 (2005). CASPubMed Google Scholar
Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA92, 7297–7301 (1995). This is the first paper to show that PEI can facilitate DNA transfectionin vitroandin vivo. CASPubMed Google Scholar
Godbey, W. T., Wu, K. K. & Mikos, A. G. Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J. Biomed. Mater. Res.45, 268–275 (1999). CASPubMed Google Scholar
Wightman, L. et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med.3, 362–372 (2001). CASPubMed Google Scholar
Goula, D. et al. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther.5, 1291–1295 (1998). CASPubMed Google Scholar
Kircheis, R., Wightman, L. & Wagner, E. Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev.53, 341–358 (2001). CASPubMed Google Scholar
Coll, J. L. et al. In vivo delivery to tumors of DNA complexed with linear polyethylenimine. Hum. Gene Ther.10, 1659–1666 (1999). CASPubMed Google Scholar
Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release114, 100–109 (2006). CASPubMed Google Scholar
Nguyen, H. K. et al. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther.7, 126–138 (2000). CASPubMed Google Scholar
Petersen, H. et al. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem.13, 845–854 (2002). CASPubMed Google Scholar
Breunig, M., Lungwitz, U., Liebl, R. & Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. USA104, 14454–14459 (2007). CASPubMed Google Scholar
Thomas, M. & Klibanov, A. M. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc. Natl Acad. Sci. USA99, 14640–14645 (2002). CASPubMed Google Scholar
Fortune, J. A., Novobrantseva, T. I. & Klibanov, A. M. Highly effective gene transfection in vivo by alkylated polyethylenimine. J. Drug Deliv.2011, 204058 (2011). PubMedPubMed Central Google Scholar
Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotech.31, 898–907 (2013). CAS Google Scholar
Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotech.29, 154–157 (2011). References 86 and 87 show the therapeutic potential of delivery of modified mRNAin vivo. CAS Google Scholar
Su, X., Fricke, J., Kavanagh, D. G. & Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharm.8, 774–787 (2011). CASPubMedPubMed Central Google Scholar
Phua, K. K., Leong, K. W. & Nair, S. K. Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. J. Control. Release166, 227–233 (2013). CASPubMedPubMed Central Google Scholar
Kanasty, R. L., Whitehead, K. A., Vegas, A. J. & Anderson, D. G. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol. Ther.20, 513–524 (2012). CASPubMedPubMed Central Google Scholar
Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Rev. Drug Discov.9, 57–67 (2010). CAS Google Scholar
Nguyen, D. N. et al. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc. Natl Acad. Sci. USA109, E797–E803 (2012). CASPubMed Google Scholar
Whitehead, K. A., Dahlman, J. E., Langer, R. S. & Anderson, D. G. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng.2, 77–96 (2011). CASPubMed Google Scholar
Wang, A. Z., Langer, R. & Farokhzad, O. C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med.63, 185–198 (2012). CASPubMed Google Scholar
Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotech.25, 1149–1157 (2007). CAS Google Scholar
Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18, 1357–1364 (2010). CASPubMedPubMed Central Google Scholar
Malek, A. et al. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol. Appl. Pharmacol.236, 97–108 (2009). CASPubMed Google Scholar
Huang, Y. et al. Elimination pathways of systemically delivered siRNA. Mol. Ther.19, 381–385 (2011). CASPubMed Google Scholar
Rozema, D. B. et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl Acad. Sci. USA104, 12982–12987 (2007). CASPubMed Google Scholar
Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nature Mater.12, 967–977 (2013). CAS Google Scholar
Zuckerman, J. E., Choi, C. H., Han, H. & Davis, M. E. Polycation–siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl Acad. Sci. USA109, 3137–3142 (2012). CASPubMed Google Scholar
Naeye, B. et al. In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. Biomaterials34, 2350–2358 (2013). CASPubMed Google Scholar
Aird, W. C. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circul. Res.100, 158–173 (2007). CAS Google Scholar
Wisse, E., Jacobs, F., Topal, B., Frederik, P. & De Geest, B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther.15, 1193–1199 (2008). CASPubMed Google Scholar
Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem.21, 797–802 (2010). CASPubMed Google Scholar
Yu, B., Zhao, X., Lee, L. J. & Lee, R. J. Targeted delivery systems for oligonucleotide therapeutics. AAPS J.11, 195–203 (2009). CASPubMedPubMed Central Google Scholar
Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nature Nanotechnol.8, 137–143 (2013). CAS Google Scholar
Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nature Biotech.31, 653–658 (2013). This study elucidates the mechanism of cellular uptake of LNPs and the importance of exocytosis in limiting delivery efficiency. CAS Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). CASPubMed Google Scholar
Geisbert, T. W. et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet375, 1896–1905 (2010). CASPubMed Google Scholar
Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006). CASPubMed Google Scholar
Wheeler, J. J. et al. Stabilized plasmid–lipid particles: construction and characterization. Gene Ther.6, 271–281 (1999). CASPubMed Google Scholar
Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotech.23, 1002–1007 (2005). CAS Google Scholar
Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl.51, 8529–8533 (2012). CASPubMedPubMed Central Google Scholar
Akinc, A. et al. Development of lipidoid–siRNA formulations for systemic delivery to the liver. Mol. Ther.17, 872–879 (2009). CASPubMedPubMed Central Google Scholar
Alabi, C. A. et al. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl Acad. Sci. USA110, 12881–12886 (2013). CASPubMed Google Scholar
Burnett, J. C., Rossi, J. J. & Tiemann, K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol. J.6, 1130–1146 (2011). CASPubMedPubMed Central Google Scholar
Fitzgerald, K. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet383, 60–68 (2014). CASPubMed Google Scholar
Santel, A. et al. A novel siRNA–lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther.13, 1222–1234 (2006). CASPubMed Google Scholar
Santel, A. et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA–lipoplexes for cancer therapy. Gene Ther.13, 1360–1370 (2006). CASPubMed Google Scholar
Aleku, M. et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res.68, 9788–9798 (2008). CASPubMed Google Scholar
Landen, C. N. Jr. et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res.65, 6910–6918 (2005). CASPubMed Google Scholar
Davis, M. E. et al. Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr. Med. Chem.11, 179–197 (2004). CASPubMed Google Scholar
Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E. & Triche, T. J. Sequence-specific knockdown of EWS–FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Res.65, 8984–8992 (2005). CASPubMed Google Scholar
Bartlett, D. W. & Davis, M. E. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol. Bioeng.99, 975–985 (2008). CASPubMed Google Scholar
Heidel, J. D. et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl Acad. Sci. USA104, 5715–5721 (2007). CASPubMed Google Scholar
Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464, 1067–1070 (2010). This paper provides the first evidence that systemically administered siRNA can induce RNAi in humans. CASPubMedPubMed Central Google Scholar
Wong, S. C. et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid. Ther.22, 380–390 (2012). CASPubMedPubMed Central Google Scholar
Rozema, D. B., Ekena, K., Lewis, D. L., Loomis, A. G. & Wolff, J. A. Endosomolysis by masking of a membrane-active agent (EMMA) for cytoplasmic release of macromolecules. Bioconjug.Chem.14, 51–57 (2003). CASPubMed Google Scholar
Wooddell, C. I. et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther.21, 973–985 (2013). CASPubMedPubMed Central Google Scholar
Yasuda, M. et al. RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.1406228111 (2014).
Chen, K. & Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nature Rev. Genet.8, 93–103 (2007). CASPubMed Google Scholar
Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches and considerations. Nature Rev. Genet.13, 358–369 (2012). CASPubMed Google Scholar
Trang, P. et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther.19, 1116–1122 (2011). CASPubMedPubMed Central Google Scholar
Gaj, T., Gersbach, C. A. & Barbas, C. F. 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol.31, 397–405 (2013). CASPubMedPubMed Central Google Scholar
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nature Rev. Genet.11, 636–646 (2010). CASPubMed Google Scholar
Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science326, 1509–1512 (2009). CASPubMed Google Scholar
Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science326, 1501 (2009). CASPubMed Google Scholar
Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nature Biotech.29, 143–148 (2011). CAS Google Scholar
Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell153, 910–918 (2013). CASPubMedPubMed Central Google Scholar
Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell154, 1380–1389 (2013). CASPubMedPubMed Central Google Scholar
Li, H. et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature475, 217–221 (2011). This study is the first to show that genome editing tools (ZFN) can modify genein vivoand rescue disease phenotype. CASPubMedPubMed Central Google Scholar
Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nature Biotech.32, 551–553 (2014). This paper is the first to show that the Cas9 system can correct a disease mutation and rescue disease phenotype in adult animals. CAS Google Scholar
Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov.1, 727–730 (2002). CAS Google Scholar
Heyes, J., Palmer, L., Bremner, K. & MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Release107, 276–287 (2005). CASPubMed Google Scholar
Ambegia, E. et al. Stabilized plasmid-lipid particles containing PEG–diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim. Biophys. Acta1669, 155–163 (2005). CASPubMed Google Scholar
Mishra, S., Heidel, J. D., Webster, P. & Davis, M. E. Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Control. Release116, 179–191 (2006). CASPubMed Google Scholar
Bellocq, N. C., Pun, S. H., Jensen, G. S. & Davis, M. E. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem.14, 1122–1132 (2003). CASPubMed Google Scholar
Mishra, S., Webster, P. & Davis, M. E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol.83, 97–111 (2004). CASPubMed Google Scholar
Ramalingam, S., Annaluru, N. & Chandrasegaran, S. A CRISPR way to engineer the human genome. Genome Biol.14, 107 (2013). PubMedPubMed Central Google Scholar