Regulatory phases of early liver development: paradigms of organogenesis (original) (raw)
Zaret, K. S. Hepatocyte differentiation: from the endoderm and beyond. Curr. Opin. Genet. Dev.11, 568–574 (2001). ArticleCASPubMed Google Scholar
Gorski, K., Carneiro, M. & Schibler, U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell47, 767–776 (1986). ArticleCASPubMed Google Scholar
Lai, E. et al. HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev.4, 1427–1436 (1990). ArticleCASPubMed Google Scholar
Lai, E., Prezioso, V. R., Tao, W., Chen, W. S. & Darnell, J. E. Jr. Hepatocyte nuclear factor 3A belongs to a gene family in mammals that is homologous to the Drosophila homeotic gene fork head. Genes Dev.5, 416–427 (1991). ArticleCASPubMed Google Scholar
Costa, R. H. Liver Gene Expression 183–205 (R. G. Landes Co., Austin, Texas, 1994). Google Scholar
Zaret, K. Developmental competence of the gut endoderm: genetic potentiation by GATA and HNF3/fork head proteins. Dev. Biol.209, 1–10 (1999). ArticleCASPubMed Google Scholar
Sasaki, H. & Hogan, B. L. M. Differential expression of multiple fork head related genes during gastrulation and pattern formation in the mouse embryo. Development118, 47–59 (1993). CASPubMed Google Scholar
Ang, S.-L. et al. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development119, 1301–1315 (1993). CASPubMed Google Scholar
Monaghan, A. P., Kaestner, K. H., Grau, E. & Schütz, G. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3α, β, and γ genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development119, 567–578 (1993). CASPubMed Google Scholar
Ruiz i Altaba, A., Prezioso, V. R., Darnell, J. E. & Jessell, T. M. Sequential expression of HNF-3α and HNF-3β by embryonic organizing centers: the dorsal lip/node, notochord, and floor plate. Mech. Dev.44, 91–108 (1993). ArticleCASPubMed Google Scholar
Kaestner, K. H., Katz, J., Liu, Y., Drucker, D. & Schütz, G. Inactivation of the winged helix transcription factor HNF3α affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev.13, 495–504 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kaestner, K. H., Hiemisch, H. & Schütz, G. Targeted disruption of the gene encoding hepatocyte nuclear factor 3γ results in reduced transcription of hepatocyte-specific genes. Mol. Cell. Biol.18, 4245–4251 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ang, S.-L. & Rossant, J. _HNF-3_β is essential for node and notochord formation in mouse development. Cell78, 561–574 (1994). ArticleCASPubMed Google Scholar
Weinstein, D. C. et al. The winged-helix transcription factor _HNF-3_β is required for notochord development in the mouse embryo. Cell78, 575–588 (1994). ArticleCASPubMed Google Scholar
Dufort, D., Schwartz, L., Harpal, K. & Rossant, J. The transcription factor HNF3β is required in visceral endoderm for normal primitive streak morphogenesis. Development125, 3015–3025 (1998). CASPubMed Google Scholar
Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA90, 8424–8428 (1993). ArticleCASPubMedPubMed Central Google Scholar
Tremblay, K. D., Hoodless, P. A., Bikoff, E. K. & Robertson, E. J. Formation of the definitive endoderm in mouse is a Smad2-dependent process. Development127, 3079–3090 (2000). CASPubMed Google Scholar
Weigel, D., Jürgens, G., Küttner, F., Seifert, E. & Jäckle, H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell57, 645–658 (1989). ArticleCASPubMed Google Scholar
Weigel, D., Jürgens, G., Klingler, M. & Jäckle, H. Two gap genes mediated maternal terminal pattern information in Drosophila. Science248, 495–498 (1990). ArticleCASPubMed Google Scholar
Jürgens, G. & Weigel, D. Terminal versus segmental development in the Drosophila embryo: the role of the homeotic gene fork head. Roux's Arch. Dev. Biol.197, 345–354 (1988). Article Google Scholar
Azzaria, M., Goszczynski, B., Chung, M. A., Kalb, J. M. & McGhee, J. D. A fork head/HNF-3 homolog expressed in the pharynx and intestine of the Caenorhabditis elegans embryo. Dev. Biol.178, 289–303 (1996). ArticleCASPubMed Google Scholar
Mango, S. E., Lambie, E. J. & Kimble, J. The Pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development120, 3019–3031 (1994). CASPubMed Google Scholar
Kalb, J. M. et al. pha-4 is Ce-fkh-1, a fork head/HNF-1α, β, γ homolog that functions in organogenesis of the C. elegans pharynx. Development125, 2171–2180 (1998). CASPubMed Google Scholar
Horner, M. A. et al. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev.12, 1947–1952 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dirksen, M. L. & Jamrich, M. A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev.6, 599–608 (1992). ArticleCASPubMed Google Scholar
Ruiz i Altaba, A., Cox, C., Jessell, T. M. & Klar, A. Ectopic expression of a floor plate marker in frog embryos injected with the midline transcription factor pintallavis. Proc. Natl Acad. Sci. USA90, 8268–8272 (1993). ArticleCASPubMedPubMed Central Google Scholar
Strähle, U., Blader, P., Henrique, D. & Ingham, P. W. Axial, a zebrafish gene expressed along the developing body axis, show altered expression in cyclops mutant embryos. Genes Dev.7, 1436–1446 (1993). ArticlePubMed Google Scholar
Martinez, D. E. et al. Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydra. Dev. Biol.192, 523–536 (1997). ArticleCASPubMed Google Scholar
Gaudet, J. & Mango, S. E. Regulation of organogenesis by the Caenorhabditis elegans Foxa protein PHA-4. Science295, 821–825 (2002).This paper shows that the simple high versus low affinity of the Foxa (PHA-4) transcription factor for different gene targets can often predict early versus late gene activation in development, and that Pha4 helps to control organ identity. ArticleCASPubMed Google Scholar
Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Ann. Rev. Biochem.67, 545–579 (1998). ArticleCASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCASPubMed Google Scholar
Bossard, P., McPherson, C. E. & Zaret, K. S. In vivo footprinting with limiting amounts of embryo tissues: a role for C/EBPβ in early hepatic development. Methods, Companion to Methods Enzymol.11, 180–188 (1997). ArticleCAS Google Scholar
Gualdi, R. et al. Hepatic specification of the gut endoderm in vitro: cell signalling and transcriptional control. Genes Dev.10, 1670–1682 (1996). ArticleCASPubMed Google Scholar
Bossard, P. & Zaret, K. S. GATA transcription factors as potentiators of gut endoderm differentiation. Development125, 4909–4917 (1998). CASPubMed Google Scholar
Bossard, P. & Zaret, K. S. Repressive and restrictive mesodermal interactions with gut endoderm: possible relation to Meckel's diverticulum. Development127, 4915–4923 (2000).The authors of this paper show that outside the prospective hepatic domain, the mesoderm produces at least two kinds of inhibitory signals that prevent liver development. CASPubMed Google Scholar
Hansen, J. C., Ausio, J., Stanik, V. H. & Van Holde, K. E. Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry28, 9129–9136 (1989). ArticleCASPubMed Google Scholar
Cirillo, L. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FOXA) and GATA-4. Mol. Cell9, 279–289 (2001).The authors present evidence that the Foxa transcription factor can engage a DNA-binding site in highly compacted chromatinin vitroand create a local open domain of nucleosomes. Foxa functions as a 'pioneer' transcription factor, one of the first to engage a silent gene in development. Article Google Scholar
Cirillo, L. A. & Zaret, K. S. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell4, 961–969 (1999). ArticleCASPubMed Google Scholar
Crowe, A. J. et al. Hepatocyte nuclear factor 3 relieves chromatin-mediated repression of the α-fetoprotein gene. J. Biol. Chem.274, 25113–25120 (1999). ArticleCASPubMed Google Scholar
Arceci, R., King, A. A. J., Simon, M. C., Orkin, S. H. & Wilson, D. B. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol.13, 2235–2246 (1993). ArticleCASPubMedPubMed Central Google Scholar
Laverriere, A. C. et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J. Biol. Chem.269, 23177–23184 (1994). CASPubMed Google Scholar
Narita, N., Bielinska, M. & Wilson, D. B. Wild-type visceral endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. Dev. Biol.189, 270–274 (1997). ArticleCASPubMed Google Scholar
Rehorn, K.-P., Thelen, H., Michelson, A. M. & Reuter, R. A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development122, 4023–4031 (1996). CASPubMed Google Scholar
Zhu, J., Fukushige, T., McGhee, J. D. & Rothman, J. H. Reprogramming of early embryonic blastomeres into endodermal progenitors by a Caenorhabditis elegans GATA factor. Genes Dev.12, 3809–3814 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science290, 2306–2309 (2000). ArticleCASPubMed Google Scholar
Weinmann, A. S., Yan, P. S., Oberley, M. J., Huang, T. H. & Farnham, P. J. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev.16, 235–244 (2002). ArticleCASPubMedPubMed Central Google Scholar
Szüts, D., Eresh, S. & Bienz, M. Functional intertwining of Dpp and EGFR signalling during Drosophila endoderm induction. Genes Dev.12, 2022–2035 (1998). ArticlePubMedPubMed Central Google Scholar
Le Douarin, N. Induction de l'endoderme pré-hépatique par le mésoderme de l'aire cardiaque chez l'embryon de poulet. J. Embryol. Exp. Morphol.12, 651–664 (1964). CAS Google Scholar
Le Douarin, N. M. An experimental analysis of liver development. Med. Biol.53, 427–455 (1975).This is a classic, must-read paradigm for perturbative analysis of tissue inductions. It reveals separable phases of early hepatic development, setting the stage for present-day discoveries of relevant signalling molecules. CAS Google Scholar
Schultheiss, T. M., Xydas, S. & Lassar, A. B. Induction of avian cardiac myogenesis by anterior endoderm. Development121, 4203–4214 (1995). CASPubMed Google Scholar
Sugi, Y. & Lough, J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev. Biol.168, 567–574 (1995). ArticleCASPubMed Google Scholar
Gannon, M. & Bader, D. Initiation of cardiac differentiation occurs in the absence of anterior endoderm. Development121, 2439–2450 (1995). CASPubMed Google Scholar
Jung, J., Zheng, M., Goldfarb, M. & Zaret, K. S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science284, 1998–2003 (1999).This study uses an embryonic tissue explant system to show that FGF signalling from the cardiogenic mesoderm is necessary and sufficient to induce hepatic gene expression in the endoderm (but also see reference64). ArticleCASPubMed Google Scholar
Zhu, X., Sasse, J., McAllister, D. & Lough, J. Evidence that fibroblast growth factors 1 and 4 participate in regulation of cardiogenesis. Dev. Dyn.207, 429–438 (1996). ArticleCASPubMed Google Scholar
Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development121, 439–451 (1995). CASPubMed Google Scholar
Stark, K. L., McMahon, J. A. & McMahon, A. P. FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development113, 641–651 (1991). CASPubMed Google Scholar
Sugi, Y., Sasse, J., Barron, M. & Lough, J. Developmental expression of fibroblast growth factor receptor-1 (cek-1; flg) during heart development. Dev. Dyn.202, 115–125 (1995). ArticleCASPubMed Google Scholar
Meyers, E. N., Lewandowski, M. & Martin, G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet.18, 136–141 (1998). ArticleCASPubMed Google Scholar
Yamaguchi, T. P., Conlon, R. A. & Rossant, J. Expression of the fibroblast growth factor receptor FGFR-1/flg during gastrulation and segmentation in the mouse embryo. Dev. Biol.152, 75–88 (1992). ArticleCASPubMed Google Scholar
Miller, D. L., Ortega, S., Bashayan, O., Basch, R. & Basilico, C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol. Cell. Biol.20, 2260–2268 (2000). ArticleCASPubMedPubMed Central Google Scholar
Weinstein, M., Xu, X., Ohyama, K. & Deng, C.-X. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development125, 3615–3623 (1998). CASPubMed Google Scholar
Harvey, R. P. & Rosenthal, A. (eds) Heart Development (Academic, San Diego, California, 1999). Google Scholar
Rossi, J. M., Dunn, N. R., Hogan, B. L. M. & Zaret, K. S. Distinct mesodermal signals, including BMP's from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev.15, 1998–2009 (2001).The authors show that septum transversum mesenchyme (STM) cells typically contaminate ventral endoderm tissue explants from embryos (see references50and54) and that BMP signalling from STM cells is crucial for hepatogenesis. ArticleCASPubMedPubMed Central Google Scholar
Jones, C. M., Lyons, K. M. & Hogan, B. L. M. Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development111, 531–542 (1991). CASPubMed Google Scholar
Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development124, 2203–2212 (1997). CASPubMed Google Scholar
Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. M. Bone morphongenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev.9, 2105–2116 (1995). ArticleCASPubMed Google Scholar
Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell70, 829–840 (1992). ArticleCASPubMed Google Scholar
Deutsch, G., Jung, J., Zheng, M., Lóra, J. & Zaret, K. S. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development128, 871–881 (2001).An unexpected observation that a single population of ventral endoderm cells can initiate either hepatic or pancreatic gene programmes, under the influence of FGF signalling (see reference54). CASPubMed Google Scholar
Brusca, B. Invertebrates (Sinauer Associates, Sunderland, Massachusetts, 1990). Google Scholar
Hoar, W. S. General and Comparative Physiology (Prentice–Hall, Inc., Englewood Cliffs, New Jersey, 1975). Google Scholar
Elliot, W. M. & Youson, J. H. Development of the adult endocrine pancreas during metamorphosis in the sea lamprey, Petromyzon marinus L. II. Electron microscopy and immunocytochemistry. Anat. Rec.237, 271–290 (1993). Article Google Scholar
Wolf, H. K., Burchette, J. L. Jr, Garcia, J. A. & Michalopoulos, G. Exocrine pancreatic tissue in human liver: a metaplastic process? Am. J. Surg. Pathol.14, 590–595 (1990). ArticleCASPubMed Google Scholar
Rao, M. S. et al. Role of periductal and ductalar epithelial cells of the adult rat pancreas in pancreatic hepatocyte lineage: a change in the differentiation commitment. Am. J. Pathol.134, 1069–1086 (1989). CASPubMedPubMed Central Google Scholar
Wang, X., Al-Dhalimy, M., Lagasse, E., Finegold, M. & Grompe, M. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am. J. Pathol.158, 571–579 (2001). ArticleCASPubMedPubMed Central Google Scholar
Krakowski, M. L. et al. Pancreatic expression of keratinocyte growth factor leads to differentiation of islet hepatocytes and proliferation of duct cells. Am. J. Pathol.154, 683–691 (1999). ArticleCASPubMedPubMed Central Google Scholar
Shen, C. N., Slack, J. M. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol.2, 879–887 (2000).A careful study showing that individual pancreatic exocrine cells can be induced to transdifferentiate and express hepatic genes, under the influence of dexamethasome or the transcription factor C/EBPα. ArticleCASPubMed Google Scholar
Fukuda-Taira, S. Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. J. Embryol. Exp. Morphol.63, 111–125 (1981). CASPubMed Google Scholar
Cascio, S. & Zaret, K. S. Hepatocyte differentiation initiates during endodermal–mesenchymal interactions prior to liver formation. Development113, 217–225 (1991). CASPubMed Google Scholar
Hromas, R., Radich, J. & Collins, S. PCR cloning of an orphan homeobox gene (PRH) preferentially expressed in myeloid and liver cells. Biochem. Biophys. Res. Commun.195, 976–983 (1993). ArticleCASPubMed Google Scholar
Crompton, M. R. et al. Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells. Nucleic Acids Res.20, 5661–5667 (1992). ArticleCASPubMedPubMed Central Google Scholar
Oliver, G. et al. Prox1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev.44, 3–16 (1993). ArticleCASPubMed Google Scholar
Thomas, P. Q., Brown, A. & Beddington, R. S. P. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development125, 85–94 (1998). CASPubMed Google Scholar
Brickman, J. M., Jones, C. M., Clements, M., Smith, J. C. & Beddington, R. S. Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function. Development127, 2303–2315 (2000). CASPubMed Google Scholar
Martinez-Barbera, J. P. et al. The homeobox gene hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development127, 2433–2445 (2000). CASPubMed Google Scholar
Keng, V. W. et al. Homeobox gene Hex is essential for onset of mouse embryonic liver development and differentiation of the monocyte lineage. Biochem. Biophys. Res. Commun.276, 1155–1161 (2000).References86and87discuss homozygous mutations ofHexin mouse embryos, which cause the earliest known defect in liver development. As the Hex protein is expressed in the endoderm, before hepatic induction, it is linked to the mechanism of hepatic specification. It is the only protein that has, so far, been shown directly to have such a function. ArticleCASPubMed Google Scholar
Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration during liver development requires Prox1. Nature Genet.25, 254–255 (2000).The Prox1 requirement for early liver-bud development provides a superb example of the requirement for remodelling of the extracellular matrix and cell–cell junctions to allow tissue morphogenesis. ArticleCASPubMed Google Scholar
Nagafuchi, A. Molecular architecture of adherens junctions. Curr. Opin. Cell Biol.13, 600–603 (2001). ArticleCASPubMed Google Scholar
Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell98, 769–778 (1999). ArticleCASPubMed Google Scholar
Wigle, J. T., Chowdhury, K., Gruss, P. & Oliver, G. Prox1 function is crucial for mouse lens-fibre elongation. Nature Genet.21, 318–322 (1999). ArticleCASPubMed Google Scholar
Fässler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev.9, 1896–1908 (1995). ArticlePubMed Google Scholar
Hynes, R. O. Integrins: versatility, modulation, and signalling in cell adhesion. Cell69, 11–25 (1992). ArticleCASPubMed Google Scholar
Hentsch, B. et al. Hlx homeobox gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev.10, 70–79 (1996). ArticleCASPubMed Google Scholar
Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature373, 699–702 (1995). ArticleCASPubMed Google Scholar
Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature376, 768–772 (1995). ArticleCASPubMed Google Scholar
Amicone, L. et al. Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes. EMBO J.16, 495–503 (1997). ArticleCASPubMedPubMed Central Google Scholar
Weinstein, M. et al. Smad proteins and hepatocyte growth factor control parallel regulatory pathways that converge on β1-integrin to promote normal liver development. Mol. Cell. Biol.21, 5122–5131 (2001).This paper beautifully illustrates what can be learned from constructing doubly heterozygous mice with null alleles of Smad transcription factor genes that are individually early embryonic lethal when homozygous. It provides a further integration of Tgf-β, Hfg and integrin signalling pathways that are required for early hepatic growth. ArticleCASPubMedPubMed Central Google Scholar
Grasl-Kraupp, B. et al. Levels of transforming growth factor β and transforming growth factor β receptors in rat liver during growth, regression by apoptosis and neoplasia. Hepatology28, 717–726 (1998). ArticleCASPubMed Google Scholar
Isfort, R. J. et al. The combination of epidermal growth factor and transforming growth factor-β induces novel phenotypic changes in mouse liver stem cell lines. J. Cell Sci.110, 3117–3129 (1997). CASPubMed Google Scholar
Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev.11, 2468–2481 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ganiatsas, S. et al. SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc. Natl Acad. Sci. USA95, 6881–6886 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nishina, H. et al. Defective liver formation and liver cell apoptosis in mice lacking the stress signalling kinase SEK1/MKK4. Development126, 505–516 (1999). CASPubMed Google Scholar
Hilberg, F., Aguzzi, A., Howells, N. & Wagner, E. F. c-Jun is essential for normal mouse development and hepatogenesis. Nature365, 179–181 (1993). ArticleCASPubMed Google Scholar
Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev.14, 152–157 (2000). CASPubMedPubMed Central Google Scholar
Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature376, 167–170 (1995). ArticleCASPubMed Google Scholar
Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity10, 421–429 (1999). ArticleCASPubMed Google Scholar
Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev.14, 854–862 (2000). CASPubMedPubMed Central Google Scholar
Doi, T. S. et al. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc. Natl Acad. Sci. USA96, 2994–2999 (1999).These authors use genetics to show that the various NF-κB pathway components that, when inactivated, lead to fetal hepatic apoptosis (see references105, 107–109, 111), normally protect the early liver against a systemic pro-apoptotic signal from TNF. ArticleCASPubMedPubMed Central Google Scholar
Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F. & Verma, I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science284, 321–325 (1999). ArticleCASPubMed Google Scholar
Rosenfeld, M. E., Prichard, L., Shiojiri, N. & Fausto, N. Prevention of hepatic apoptosis and embryonic lethality in RelA/TNFR-1 double knockout mice. Am. J. Pathol.156, 997–1007 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fruman, D. A. et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 α. Nature Genet.26, 379–382 (2000). ArticleCASPubMed Google Scholar
Sicinski, P. et al. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell82, 621–630 (1995). ArticleCASPubMed Google Scholar
Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nature Genet.22, 44–52 (1999). ArticleCASPubMed Google Scholar
Kingsbury, J. W., Alexanderson, M. & Kornstein, E. S. The development of the liver in the chick. Anat. Rec.124, 165–187 (1956). ArticleCASPubMed Google Scholar
Sherer, G. K. in The Development of the Vascular System Vol. 14 (eds Feinberg, R. N., Sherer, G. K. & Auerbach, R.) 37–57 (Karger, Basel, Switzerland, 1991). Google Scholar
Kamiya, A. et al. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J.18, 2127–2136 (1999).This paper illustrates the synergistic relationship between the fetal liver, which is a site for haematopoiesis, and the haematopoietic cells, which provide a growth signal to the fetal hepatocytes. ArticleCASPubMedPubMed Central Google Scholar
Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science294, 559–563 (2001).This paper unexpectedly found that endothelial cells provide a very early morphogenetic signal to the liver bud, before the formation of functional blood vessels. ArticleCASPubMed Google Scholar
Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature376, 62–66 (1995). ArticleCASPubMed Google Scholar
Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell72, 835–846 (1993). ArticleCASPubMed Google Scholar
Oelrichs, R. B., Reid, H. H., Bernard, O., Ziemiecki, A. & Wilks, A. F. NYK/FLK-1: a putative receptor protein tyrosine kinase isolated from E10 embryonic neuroepithelium is expressed in endothelial cells of the developing embryo. Oncogene8, 11–18 (1993). CASPubMed Google Scholar
Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N. & Williams, L. T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl Acad. Sci. USA90, 7533–7537 (1993). ArticleCASPubMedPubMed Central Google Scholar
Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science294, 564–567 (2001).A demonstration that endothelial cells are crucial for early pancreatic differentiation and morphogenesis (see also reference119). ArticleCASPubMed Google Scholar
St Croix, B. et al. Genes expressed in human tumor endothelium. Science289, 1197–1202 (2000). ArticleCASPubMed Google Scholar
Carson-Walter, E. B. et al. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res.61, 6649–6655 (2001).This study reveals potential links between mechanisms of early tissue growth and tumorigenesis. CASPubMed Google Scholar
Shiojiri, N. Analysis of differentiation of hepatocytes and bile duct cells in developing mouse liver by albumin immunofluorescence. Dev. Growth Differ.26, 555–561 (1984). Article Google Scholar
Germain, L., Blouin, M. J. & Marceau, N. Biliary epithelial and hepatocytic cell lineage relationships in embryonic rat liver as determined by the differential expression of cytokeratins, α-fetoprotein, albumin, and cell surface-exposed components. Cancer Res.48, 4909–4918 (1988). CASPubMed Google Scholar
Landry, C. et al. HNF-6 is expressed in endoderm derivatives and nervous system of the mouse embryo and participates to the cross-regulatory network of liver-enriched transcription factors. Dev. Biol.192, 247–257 (1997). ArticleCASPubMed Google Scholar
Rausa, F. et al. The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3β in the developing murine liver and pancreas. Dev. Biol.192, 228–246 (1997). ArticleCASPubMed Google Scholar
Clotman, F. et al. The one-cut transcription factor HNF6 is required for normal development of the biliary tract. Development129, 1819–1828 (2002).Along with reference133, this is the first paper to reveal the early genetic control of bile-duct and gall-bladder development. It provides insight into the initial partitioning of bile-duct cells from hepatoblasts. CASPubMed Google Scholar
Coffinier, C. et al. Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1β. Development129, 1829–1838 (2002).Along with reference131, this paper provides insight into the functional differences between the highly related transcription factors HNF1α and HNF1β. CASPubMed Google Scholar
Kalinichenko, V. V. et al. Haploinsufficiency of the mouse Forkhead box F1 gene causes defects in gall bladder development. J. Biol. Chem. 277, 12369–12374 (2002).Illustrates how signals from the septum transversum mesenchyme are crucial for controlling bile-duct and gall-bladder morphogenesis. ArticleCASPubMed Google Scholar
Deschatrette, J. & Weiss, M. C. Characterization of differentiated and dedifferentiated clones from a rat hepatoma. Biochimie56, 1603–1611 (1974). ArticleCASPubMed Google Scholar
Griffo, G. et al. HNF4 and HNF1 as well as a panel of hepatic functions are extinguished and reexpressed in parallel in chromosomally reduced rat hepatoma–human fibroblast hybrids. J. Cell Biol.121, 887–898 (1993). ArticleCASPubMed Google Scholar
Spagnoli, F. M., Amicone, L., Tripodi, M. & Weiss, M. C. Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-Met in the liver. J. Cell Biol.143, 1101–1112 (1998).The authors showed that cell lines could be established from fetal livers that represent progenitors for both hepatic and biliary lineages. ArticleCASPubMedPubMed Central Google Scholar
Herrera, P. L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development127, 2317–2322 (2000). CASPubMed Google Scholar
Wang, N.-D. et al. Impaired energy homeostasis in C/EBPα knockout mice. Science269, 1108–1112 (1995). ArticleCASPubMed Google Scholar
Stamatoglou, S. C. & Hughes, R. C. Cell adhesion molecules in liver function and pattern formation. FASEB J.8, 420–427 (1994). ArticleCASPubMed Google Scholar
Sladek, F. M., Zhong, W., Lai, E. & Darnell, J. E. Jr. Liver enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev.4, 2353–2364 (1990). ArticleCASPubMed Google Scholar
Holewa, B., Zapp, D., Drewes, T., Senkel, S. & Ryffel, G. U. HNF4β, a new gene of the HNF4 family with distinct activation and expression profiles in oogenesis and embryogenesis of Xenopus laevis. Mol. Cell. Biol.17, 687–694 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zhong, W., Sladek, F. M. & Darnell, J. E. Jr. The expression pattern of a Drosophila homolog to the mouse transcription factor HNF-4 suggests a determinative role in gut formation. EMBO J.12, 537–544 (1993). ArticleCASPubMedPubMed Central Google Scholar
Chen, W. S. et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev.8, 2466–2477 (1994). ArticleCASPubMed Google Scholar
Duncan, S. A., Nagy, A. & Chan, W. Murine gastrulation requires HNF-4 regulated gene expression in the visceral endoderm: tetraploid rescue of Hnf-4(−/−) embryos. Development124, 279–287 (1997). CASPubMed Google Scholar
Li, J., Ning, G. & Duncan, S. A. Mammalian hepatocyte differentiation requires the transcription factor HNF-4α. Genes Dev.14, 464–474 (2000).The authors use tetraploid chimaera analysis (see reference16) to overcome a requirement of Hnf4 in the visceral endoderm (see references143and144), and show that Hnf4 is required for terminal hepatocyte differentiation. CASPubMedPubMed Central Google Scholar
Tian, J.-M. & Schibler, U. Tissue-specific expression of the gene encoding hepatocyte nuclear factor 1 may involve hepatocyte nuclear factor 4. Development5, 2225–2234 (1991). CAS Google Scholar
Kuo, C. J. et al. A transcriptional hierarchy involved in mammalian cell-type specification. Nature355, 457–461 (1992). ArticleCASPubMed Google Scholar
Holewa, B., Strandmann, E. P., Zapp, D., Lorenz, P. & Ryffel, G. U. Transcriptional hierarchy in Xenopus embryogenesis: HNF4 a maternal factor involved in the developmental activation of the gene encoding the tissue specific transcription factor HNF1α (LFB1). Mech. Dev.54, 45–57 (1996). ArticleCASPubMed Google Scholar
Spath, G. F. & Weiss, M. C. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J. Cell Biol.140, 935–946 (1998).A striking observation that the transcription factor Hnf4 converts non-polarized, dedifferentiated hepatoma cells to an epithelial-cell morphology. This mimics thein vivotransition of non-polarized hepatoblasts to differentiated, epithelial hepatocytes. ArticleCASPubMedPubMed Central Google Scholar
Parviz, F., Li, J., Kaestner, K. H. & Duncan, S. A. Generation of a conditionally null allele of hnf4α. Genesis32, 130–133 (2002). ArticleCASPubMed Google Scholar
Soutoglou, E., Katrakili, N. & Talianidis, I. Acetylation regulates transcription factor activity at multiple levels. Mol. Cell5, 745–751 (2000). ArticleCASPubMed Google Scholar
Beddington, R. S. & Robertson, E. J. Anterior patterning in mouse. Trends Genet.14, 277–284 (1998). ArticleCASPubMed Google Scholar
Lawson, K. A. & Pedersen, R. A. Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development101, 627–652 (1987). CASPubMed Google Scholar
Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development113, 891–911 (1991). CASPubMed Google Scholar