To respond or not to respond: T cells in allergic asthma (original) (raw)
Holgate, S. T. The epidemic of allergy and asthma. Nature402, B2–B4 (1999). CASPubMed Google Scholar
Umetsu, D. T., McIntire, J. J., Akbari, O., Macaubas, C. & DeKruyff, R. H. Asthma: an epidemic of dysregulated immunity. Nature Immunol.3, 715–720 (2002). CAS Google Scholar
Cookson, W. The alliance of genes and environment in asthma and allergy. Nature402, B5–B11 (1999). CASPubMed Google Scholar
Strachan, D. P. Family size, infection and atopy: the first decade of the 'hygiene hypothesis'. Thorax55 Suppl. 1, S2–S10 (2000). PubMedPubMed Central Google Scholar
Kramer, U., Heinrich, J., Wjst, M. & Wichmann, H. E. Age of entry to day nursery and allergy in later childhood. Lancet353, 450–454 (1999). CASPubMed Google Scholar
Ball, T. M. et al. Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N. Engl. J. Med.343, 538–543 (2000). CASPubMed Google Scholar
Busse, W. W. & Lemanske, R. F. Jr. Asthma. N. Engl. J. Med.344, 350–362 (2001). CASPubMed Google Scholar
Kim, J., Woods, A., Becker-Dunn, E. & Bottomly, K. Distinct functional phenotypes of cloned Ia-restricted helper T cells. J. Exp. Med.162, 188–201 (1985). CASPubMed Google Scholar
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986). CASPubMed Google Scholar
van Reijsen, F. C. et al. Skin-derived aeroallergen-specific T-cell clones of TH2 phenotype in patients with atopic dermatitis. J. Allergy Clin. Immunol.90, 184–192 (1992). CASPubMed Google Scholar
Robinson, D. S. et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N. Engl. J. Med.326, 298–304 (1992). CASPubMed Google Scholar
Walker, C. et al. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am. Rev. Respir. Dis.146, 109–115 (1992). CASPubMed Google Scholar
Robinson, D. et al. Activation of CD4+ T cells, increased TH2-type cytokine mRNA expression, and eosinophil recruitment in bronchoalveolar lavage after allergen inhalation challenge in patients with atopic asthma. J. Allergy Clin. Immunol.92, 313–324 (1993). CASPubMed Google Scholar
Hamid, Q., Boguniewicz, M. & Leung, D. Y. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J. Clin. Invest.94, 870–876 (1994). CASPubMedPubMed Central Google Scholar
Huang, S. K. et al. IL-13 expression at the sites of allergen challenge in patients with asthma. J. Immunol.155, 2688–2694 (1995). CASPubMed Google Scholar
Hamid, Q. et al. In vivo expression of IL-12 and IL-13 in atopic dermatitis. J. Allergy Clin. Immunol.98, 225–231 (1996). CASPubMed Google Scholar
Nakajima, H. et al. CD4+ T-lymphocytes and interleukin-5 mediate antigen-induced eosinophil infiltration into the mouse trachea. Am. Rev. Respir. Dis.146, 374–377 (1992). CASPubMed Google Scholar
Gavett, S. H., Chen, X., Finkelman, F. & Wills-Karp, M. Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am. J. Respir. Cell. Mol. Biol.10, 587–593 (1994). CASPubMed Google Scholar
Brusselle, G. G. et al. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin. Exp. Allergy24, 73–80 (1994). CASPubMed Google Scholar
Cohn, L., Tepper, J. S. & Bottomly, K. IL-4-independent induction of airway hyperresponsiveness by TH2, but not TH1, cells. J. Immunol.161, 3813–3816 (1998). CASPubMed Google Scholar
Coyle, A. J. et al. Interleukin-4 is required for the induction of lung TH2 mucosal immunity. Am. J. Respir. Cell. Mol. Biol.13, 54–59 (1995). CASPubMed Google Scholar
Kips, J. C. et al. Importance of interleukin-4 and interleukin-12 in allergen-induced airway changes in mice. Int. Arch. Allergy Immunol.107, 115–118 (1995). CASPubMed Google Scholar
Corry, D. B. et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med.183, 109–117 (1996). CASPubMed Google Scholar
Herrick, C. A., MacLeod, H., Glusac, E., Tigelaar, R. E. & Bottomly, K. TH2 responses induced by epicutaneous or inhalational protein exposure are differentially dependent on IL-4. J. Clin. Invest.105, 765–775 (2000). CASPubMedPubMed Central Google Scholar
Schwarze, J. et al. CD8 T cells are essential in the development of respiratory syncytial virus-induced lung eosinophilia and airway hyperresponsiveness. J. Immunol.162, 4207–4211 (1999). CASPubMed Google Scholar
Schwarze, J. et al. Transfer of the enhancing effect of respiratory syncytial virus infection on subsequent allergic airway sensitization by T lymphocytes. J. Immunol.163, 5729–5734 (1999). CASPubMed Google Scholar
Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature383, 787–793 (1996). CASPubMed Google Scholar
Shirakawa, T., Enomoto, T., Shimazu, S. & Hopkin, J. M. The inverse association between tuberculin responses and atopic disorder. Science275, 77–79 (1997). CASPubMed Google Scholar
Shaheen, S. O. et al. Measles and atopy in Guinea-Bissau. Lancet347, 1792–1796 (1996). CASPubMed Google Scholar
von Hertzen, L., Klaukka, T., Mattila, H. & Haahtela, T. Mycobacterium tuberculosis infection and the subsequent development of asthma and allergic conditions. J. Allergy Clin. Immunol.104, 1211–1214 (1999). CASPubMed Google Scholar
Fonager, K., Sorensen, H. T. & Olsen, J. Change in incidence of Crohn's disease and ulcerative colitis in Denmark. A study based on the National Registry of Patients, 1981–1992. Int. J. Epidemiol.26, 1003–1008 (1997). CASPubMed Google Scholar
Armitage, E., Drummond, H. E., Wilson, D. C. & Ghosh, S. Increasing incidence of both juvenile-onset Crohn's disease and ulcerative colitis in Scotland. Eur. J. Gastroenterol. Hepatol.13, 1439–1447 (2001). CASPubMed Google Scholar
Onkamo, P., Vaananen, S., Karvonen, M. & Tuomilehto, J. Worldwide increase in incidence of type I diabetes — the analysis of the data on published incidence trends. Diabetologia42, 1395–1403 (1999). CASPubMed Google Scholar
van den Biggelaar, A. H. et al. The prevalence of parasite infestation and house dust mite sensitization in Gabonese schoolchildren. Int. Arch. Allergy Immunol.126, 231–238 (2001). CASPubMed Google Scholar
Yazdanbakhsh, M., van den Biggelaar, A. & Maizels, R. M. TH2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol.22, 372–377 (2001). CASPubMed Google Scholar
Cohn, L. et al. TH2-induced airway mucus production is dependent on IL-4Rα, but not on eosinophils. J. Immunol.162, 6178–6183 (1999). CASPubMed Google Scholar
Hansen, G., Berry, G., DeKruyff, R. H. & Umetsu, D. T. Allergen-specific TH1 cells fail to counterbalance TH2 cell-induced airway hyperreactivity but cause severe airway inflammation. J. Clin. Invest.103, 175–183 (1999). CASPubMedPubMed Central Google Scholar
Huang, T. J. et al. Allergen-specific TH1 cells counteract efferent TH2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-γ. J. Immunol.166, 207–217 (2001). CASPubMed Google Scholar
Hogan, S. P., Mould, A., Kikutani, H., Ramsay, A. J. & Foster, P. S. Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J. Clin. Invest.99, 1329–1339 (1997). CASPubMedPubMed Central Google Scholar
Cohn, L., Herrick, C., Niu, N., Homer, R. & Bottomly, K. IL-4 promotes airway eosinophilia by suppressing IFN-γ production: defining a novel role for IFN-γ in the regulation of allergic airway inflammation. J. Immunol.166, 2760–2767 (2001). CASPubMed Google Scholar
Li, L., Xia, Y., Nguyen, A., Feng, L. & Lo, D. TH2-induced eotaxin expression and eosinophilia coexist with TH1 responses at the effector stage of lung inflammation. J. Immunol.161, 3128–3135 (1998). CASPubMed Google Scholar
Randolph, D. A., Stephens, R., Carruthers, C. J. & Chaplin, D. D. Cooperation between TH1 and TH2 cells in a murine model of eosinophilic airway inflammation. J. Clin. Invest.104, 1021–1029 (1999). CASPubMedPubMed Central Google Scholar
Boguniewicz, M. et al. The effects of nebulized recombinant interferon-γ in asthmatic airways. J. Allergy Clin. Immunol.95, 133–135 (1995). CASPubMed Google Scholar
Martin, R. J. et al. The effects of inhaled interferon-γ in normal human airways. Am. Rev. Respir. Dis.148, 1677–1682 (1993). CASPubMed Google Scholar
Tournoy, K. G., Kips, J. C. & Pauwels, R. A. Is TH1 the solution for TH2 in asthma? Clin. Exp. Allergy32, 17–29 (2002). CASPubMed Google Scholar
Wills-Karp, M., Santeliz, J. & Karp, C. L. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Rev. Immunol.1, 69–75. (2001). CAS Google Scholar
Yssel, H., Lecart, S. & Pene, J. Regulatory T cells and allergic asthma. Microbes Infect.3, 899–904 (2001). CASPubMed Google Scholar
Shevach, E. M. CD4+ CD25+ suppressor T cells: more questions than answers. Nature Rev. Immunol.2, 389–400 (2002). CAS Google Scholar
Read, S. & Powrie, F. CD4+ regulatory T cells. Curr. Opin. Immunol.13, 644–649 (2001). CASPubMed Google Scholar
McGuirk, P., McCann, C. & Mills, K. H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med.195, 221–231 (2002). This study provides evidence that microbial antigens can induce regulatory T cells and is the first demonstration of pathogen-specific T regulatory type 1 (TR1) cells. CASPubMedPubMed Central Google Scholar
McGuirk, P. & Mills, K. H. Pathogen-specific regulatory T cells provoke a shift in the TH1/TH2 paradigm in immunity to infectious diseases. Trends Immunol.23, 450–455 (2002). CASPubMed Google Scholar
Seymour, B. W., Gershwin, L. J. & Coffman, R. L. Aerosol-induced immunoglobulin (Ig)-E unresponsiveness to ovalbumin does not require CD8+ or T cell receptor (TCR)-γδ+ T cells or interferon (IFN)-γ in a murine model of allergen sensitization. J. Exp. Med.187, 721–731 (1998). CASPubMedPubMed Central Google Scholar
Tsitoura, D. C., DeKruyff, R. H., Lamb, J. R. & Umetsu, D. T. Intranasal exposure to protein antigen induces immunological tolerance mediated by functionally disabled CD4+ T cells. J. Immunol.163, 2592–2600 (1999). CASPubMed Google Scholar
Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunol.2, 725–731 (2001). CAS Google Scholar
Schwartz, R. H. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell71, 1065–1068 (1992). CASPubMed Google Scholar
Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol.1, 135–145 (2001). CAS Google Scholar
Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol.20, 197–216 (2002). CASPubMed Google Scholar
Zuany-Amorim, C. et al. Suppression of airway eosinophilia by killed _Mycobacterium vaccae_- induced allergen-specific regulatory T-cells. Nature Med.8, 625–629 (2002). This paper shows that prior exposure to microbial antigens can suppress the subsequent generation of an antigen-specific airway inflammatory response. CASPubMed Google Scholar
Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cells differentiation in vivo. Immunity (in the press).
Holt, P. G., Batty, J. E. & Turner, K. J. Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunology42, 409–417 (1981). CASPubMedPubMed Central Google Scholar
Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS–ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nature Med.8, 1024–1032 (2002). This study shows both the ability of inhaled antigen to induce a population of dendritic cells (DCs), which can then induce regulatory T cellsin vitro, as well as the capacity of regulatory T cells to suppress airway inflammatory responses. CASPubMed Google Scholar
Eisenbarth, S. C. et al. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med.196, 1645–1651 (2002). This study shows that the generation of TH2-cell responses in the airways is dependent on the innate immune system signalling through Toll-like receptor 4 (TLR4) and provides a probable mechanism involving DC maturation. CASPubMedPubMed Central Google Scholar
Dabbagh, K., Dahl, M. E., Stepick-Biek, P. & Lewis, D. B. Toll-like receptor 4 is required for optimal development of TH2 immune responses: role of dendritic cells. J. Immunol.168, 4524–4530 (2002). CASPubMed Google Scholar
von Mutius, E. et al. Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin. Exp. Allergy30, 1230–1234 (2000). CASPubMed Google Scholar
Park, J. H., Gold, D. R., Spiegelman, D. L., Burge, H. A. & Milton, D. K. House dust endotoxin and wheeze in the first year of life. Am. J. Respir. Crit. Care Med.163, 322–328 (2001). CASPubMed Google Scholar
Reed, C. E. & Milton, D. K. Endotoxin-stimulated innate immunity: a contributing factor for asthma. J. Allergy Clin. Immunol.108, 157–166 (2001). CASPubMed Google Scholar
Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med.192, 1213–1222 (2000). CASPubMedPubMed Central Google Scholar
Barnes, P. F. et al. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan. Relationship to chemical structure. J. Immunol.149, 541–547 (1992). CASPubMed Google Scholar
Van der Kleij, D. et al. Triggering of innate immune responses by schistosome egg glycolipids and their carbohydrate epitope GalNAc β1–4(Fuc α1–2Fuc α1–3)GlcNAc. J. Infect. Dis.185, 531–539 (2002). CASPubMed Google Scholar
Mahanty, S. et al. High levels of spontaneous and parasite antigen-driven interleukin-10 production are associated with antigen-specific hyporesponsiveness in human lymphatic filariasis. J. Infect. Dis.173, 769–773 (1996). CASPubMed Google Scholar
Gale, E. A. A missing link in the hygiene hypothesis? Diabetologia45, 588–594 (2002). CASPubMed Google Scholar
Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science265, 1237–1240 (1994). CASPubMed Google Scholar
Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389, 737–742 (1997). CASPubMed Google Scholar
Roncarolo, M. G. & Levings, M. K. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol.12, 676–683 (2000). CASPubMed Google Scholar
Cottrez, F., Hurst, S. D., Coffman, R. L. & Groux, H. T regulatory cells 1 inhibit a TH2-specific response in vivo. J. Immunol.165, 4848–4853 (2000). CASPubMed Google Scholar
Akdis, C. A., Blesken, T., Akdis, M., Wuthrich, B. & Blaser, K. Role of interleukin 10 in specific immunotherapy. J. Clin. Invest.102, 98–106 (1998). CASPubMedPubMed Central Google Scholar
Pierkes, M. et al. Decreased release of histamine and sulfidoleukotrienes by human peripheral blood leukocytes after wasp venom immunotherapy is partially due to induction of IL-10 and IFN-γ production of T cells. J. Allergy Clin. Immunol.103, 326–332 (1999). CASPubMed Google Scholar
Jilek, S., Barbey, C., Spertini, F. & Corthesy, B. Antigen-independent suppression of the allergic immune response to bee venom phospholipase A(2) by DNA vaccination in CBA/J mice. J. Immunol.166, 3612–3621 (2001). CASPubMed Google Scholar
Zuany-Amorim, C. et al. Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J. Clin. Invest.95, 2644–2651 (1995). CASPubMedPubMed Central Google Scholar
Stampfli, M. R. et al. Interleukin-10 gene transfer to the airway regulates allergic mucosal sensitization in mice. Am. J. Respir. Cell. Mol. Biol.21, 586–596 (1999). CASPubMed Google Scholar
van den Biggelaar, A. H. et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet356, 1723–1727 (2000). CASPubMed Google Scholar
Oh, J. W. et al. CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. J. Allergy Clin. Immunol.110, 460–468 (2002). CASPubMed Google Scholar
Katagiri, K., Zhang-Hoover, J., Mo, J. S., Stein-Streilein, J. & Streilein, J. W. Using tolerance induced via the anterior chamber of the eye to inhibit TH2-dependent pulmonary pathology. J. Immunol.169, 84–89 (2002). CASPubMed Google Scholar
Kosiewicz, M. M., Alard, P. & Streilein, J. W. Alterations in cytokine production following intraocular injection of soluble protein antigen: impairment in IFN-γ and induction of TGF-β and IL-4 production. J. Immunol.161, 5382–5390 (1998). CASPubMed Google Scholar
D'Orazio, T. J. & Niederkorn, J. Y. A novel role for TGF-β and IL-10 in the induction of immune privilege. J. Immunol.160, 2089–2098 (1998). CASPubMed Google Scholar
Kung, T. T. et al. Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti-IL-5 antibody. Am. J. Respir. Cell. Mol. Biol.13, 360–365 (1995). CASPubMed Google Scholar
Van Oosterhout, A. J. et al. Eosinophil infiltration precedes development of airway hyperreactivity and mucosal exudation after intranasal administration of interleukin-5 to mice. J. Allergy Clin. Immunol.96, 104–112 (1995). CASPubMed Google Scholar
Foster, P. S., Hogan, S. P., Ramsay, A. J., Matthaei, K. I. & Young, I. G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med.183, 195–201 (1996). CASPubMed Google Scholar
Lee, J. J. et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J. Exp. Med.185, 2143–2156 (1997). CASPubMedPubMed Central Google Scholar
Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science282, 2261–2263 (1998). CASPubMedPubMed Central Google Scholar
Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science282, 2258–2261 (1998). CASPubMed Google Scholar
Zhu, Z. et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest.103, 779–788 (1999). CASPubMedPubMed Central Google Scholar
Walter, D. M. et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J. Immunol.167, 4668–4675 (2001). CASPubMed Google Scholar
Temann, U. A., Geba, G. P., Rankin, J. A. & Flavell, R. A. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J. Exp. Med.188, 1307–1320 (1998). CASPubMedPubMed Central Google Scholar
Townsend, J. M. et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity13, 573–583 (2000). CASPubMed Google Scholar
Temann, U. A., Ray, P. & Flavell, R. A. Pulmonary overexpression of IL-9 induces TH2 cytokine expression, leading to immune pathology. J. Clin. Invest.109, 29–39 (2002). CASPubMedPubMed Central Google Scholar
McMillan, S. J., Bishop, B., Townsend, M. J., McKenzie, A. N. & Lloyd, C. M. The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J. Exp. Med.195, 51–57 (2002). CASPubMedPubMed Central Google Scholar
Whittaker, L. et al. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am. J. Respir. Cell. Mol. Biol.27, 593–602 (2002). CASPubMed Google Scholar
Kuperman, D. A. et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Med.8, 885–889 (2002). CASPubMed Google Scholar
Postlethwaite, A. E. & Seyer, J. M. Fibroblast chemotaxis induction by human recombinant interleukin-4. Identification by synthetic peptide analysis of two chemotactic domains residing in amino acid sequences 70–88 and 89–122. J. Clin. Invest.87, 2147–2152 (1991). CASPubMedPubMed Central Google Scholar
Postlethwaite, A. E., Holness, M. A., Katai, H. & Raghow, R. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. J. Clin. Invest.90, 1479–1485 (1992). CASPubMedPubMed Central Google Scholar
Liu, X. et al. TH2 cytokine regulation of type I collagen gel contraction mediated by human lung mesenchymal cells. Am. J. Physiol. Lung Cell. Mol. Physiol.282, L1049–L1056 (2002). CASPubMed Google Scholar
Blease, K. et al. Therapeutic effect of IL-13 immunoneutralization during chronic experimental fungal asthma. J. Immunol.166, 5219–5224 (2001). CASPubMed Google Scholar
Swain, S. L., Weinberg, A. D., English, M. & Huston, G. IL-4 directs the development of TH2-like helper effectors. J. Immunol.145, 3796–3806 (1990). CASPubMed Google Scholar
Seder, R. A., Paul, W. E., Davis, M. M. & Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med.176, 1091–1098 (1992). CASPubMed Google Scholar
Kopf, M. et al. Disruption of the murine IL-4 gene blocks TH2 cytokine responses. Nature362, 245–248 (1993). CASPubMed Google Scholar
Fallon, P. G. et al. IL-4 induces characteristic TH2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity17, 7–17 (2002). CASPubMed Google Scholar
Barner, M., Mohrs, M., Brombacher, F. & Kopf, M. Differences between IL-4Rα-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of TH2 responses. Curr. Biol.8, 669–672 (1998). CASPubMed Google Scholar
McKenzie, G. J. et al. Impaired development of TH2 cells in IL-13-deficient mice. Immunity9, 423–432 (1998). CASPubMed Google Scholar
Urban, J. F. Jr et al. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity8, 255–264 (1998). CASPubMed Google Scholar
Finkelman, F. D. et al. IL-4 is required to generate and sustain in vivo IgE responses. J. Immunol.141, 2335–2341 (1988). CASPubMed Google Scholar
Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science254, 707–710 (1991). CASPubMed Google Scholar
Bonnefoy, J. Y., Gauchat, J. F., Lecoanet-Henchoz, S., Graber, P. & Aubry, J. P. Regulation of human IgE synthesis. Ann. NY Acad. Sci.796, 59–71 (1996). CASPubMed Google Scholar
Emson, C. L., Bell, S. E., Jones, A., Wisden, W. & McKenzie, A. N. Interleukin (IL)-4-independent induction of immunoglobulin (Ig)E, and perturbation of T cell development in transgenic mice expressing IL-13. J. Exp. Med.188, 399–404 (1998). CASPubMedPubMed Central Google Scholar