The many paths to p38 mitogen-activated protein kinase activation in the immune system (original) (raw)
Crews, C. M., Alessandrini, A. A. & Erikson, R. L. Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine. Proc. Natl Acad. Sci. USA88, 8845–8849 (1991). ArticleCASPubMedPubMed Central Google Scholar
Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell. Signal.12, 1–13 (2000). ArticleCASPubMed Google Scholar
Freshney, N. W. et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell78, 1039–1049 (1994). ArticleCASPubMed Google Scholar
Rouse, J. et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell78, 1027–1037 (1994). ArticleCASPubMed Google Scholar
Raingeaud, J. et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem.270, 7420–7426 (1995). ArticleCASPubMed Google Scholar
Hannigan, M., Zhan, L., Ai, Y. & Huang, C. K. The role of p38 MAP kinase in TGF-β1-induced signal transduction in human neutrophils. Biochem. Biophys. Res. Commun.246, 55–58 (1998). ArticleCASPubMed Google Scholar
Wilson, K. P. et al. Crystal structure of p38 mitogen-activated protein kinase. J. Biol. Chem.271, 27696–27700 (1996). ArticleCASPubMed Google Scholar
Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H. & Goldsmith, E. J. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell90, 859–869 (1997). ArticleCASPubMed Google Scholar
Bellon, S., Fitzgibbon, M. J., Fox, T., Hsiao, H. M. & Wilson, K. P. The structure of phosphorylated p38γ is monomeric and reveals a conserved activation-loop conformation. Structure7, 1057–1065 (1999). ArticleCASPubMed Google Scholar
Songyang, Z. et al. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol.16, 6486–6493 (1996). ArticleCASPubMedPubMed Central Google Scholar
Han, J., Lee, J. D., Bibbs, L. & Ulevitch, R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science265, 808–811 (1994). ArticleCASPubMed Google Scholar
Jiang, Y. et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J. Biol. Chem.271, 17920–17926 (1996). ArticleCASPubMed Google Scholar
Li, Z., Jiang, Y., Ulevitch, R. J. & Han, J. The primary structure of p38γ: a new member of p38 group of MAP kinases. Biochem. Biophys. Res. Commun.228, 334–340 (1996). ArticleCASPubMed Google Scholar
Kumar, S. et al. Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem. Biophys. Res. Commun.235, 533–538 (1997). ArticleCASPubMed Google Scholar
Hale, K. K., Trollinger, D., Rihanek, M. & Manthey, C. L. Differential expression and activation of p38 mitogen-activated protein kinase α, β, γ, and δ in inflammatory cell lineages. J. Immunol.162, 4246–4252 (1999). CASPubMed Google Scholar
Wu, J. J. & Bennett, A. M. Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. J. Biol. Chem.280, 16461–16466 (2005). ArticleCASPubMed Google Scholar
Takekawa, M. et al. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J.19, 6517–6526 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cheung, P. C., Campbell, D. G., Nebreda, A. R. & Cohen, P. Feedback control of the protein kinase TAK1 by SAPK2a/p38α. EMBO J.22, 5793–5805 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. C., Kassis, S., Kumar, S., Badger, A. & Adams, J. L. p38 mitogen-activated protein kinase inhibitors-mechanisms and therapeutic potentials. Pharmacol. Ther.82, 389–397 (1999). ArticleCASPubMed Google Scholar
Rincon, M. et al. Interferon-γ expression by Th1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J.17, 2817–2829 (1998). ArticleCASPubMedPubMed Central Google Scholar
Haeryfar, S. M. & Hoskin, D. W. Selective pharmacological inhibitors reveal differences between Thy-1- and T cell receptor-mediated signal transduction in mouse T lymphocytes. Int. Immunopharmacol.1, 689–698 (2001). ArticleCASPubMed Google Scholar
Zhang, J. et al. p38 mitogen-activated protein kinase mediates signal integration of TCR/CD28 costimulation in primary murine T cells. J. Immunol.162, 3819–3829 (1999). CASPubMed Google Scholar
Dean, J. L., Sully, G., Clark, A. R. & Saklatvala, J. The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell. Signal.16, 1113–1121 (2004). ArticleCASPubMed Google Scholar
Briata, P. et al. p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell20, 891–903 (2005). ArticleCASPubMed Google Scholar
Hitti, E. et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell. Biol.26, 2399–2407 (2006). ArticleCASPubMedPubMed Central Google Scholar
Parasrampuria, D. A., de Boer, P., Desai-Krieger, D., Chow, A. T. & Jones, C. R. Single-dose pharmacokinetics and pharmacodynamics of RWJ 67657, a specific p38 mitogen-activated protein kinase inhibitor: a first-in-human study. J. Clin. Pharmacol.43, 406–413 (2003). ArticleCASPubMed Google Scholar
Fijen, J. W. et al. Inhibition of p38 mitogen-activated protein kinase: dose-dependent suppression of leukocyte and endothelial response after endotoxin challenge in humans. Crit. Care Med.30, 841–845 (2002). ArticleCASPubMed Google Scholar
Branger, J. et al. Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J. Immunol.168, 4070–4077 (2002). ArticleCASPubMed Google Scholar
van den Blink, B. et al. P38 mitogen activated protein kinase is involved in the downregulation of granulocyte CXC chemokine receptors 1 and 2 during human endotoxemia. J. Clin. Immunol.24, 37–41 (2004). ArticleCASPubMed Google Scholar
Kumar, S., Boehm, J. & Lee, J. C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nature Rev. Drug Discov.2, 717–726 (2003). ArticleCAS Google Scholar
Palladino, M. A., Bahjat, F. R., Theodorakis, E. A. & Moldawer, L. L. Anti-TNF-α therapies: the next generation. Nature Rev. Drug Discov.2, 736–746 (2003). ArticleCAS Google Scholar
Miwatashi, S. et al. Novel inhibitor of p38 MAP kinase as an anti-TNF-α drug: discovery of _N_-[4-[2-ethyl-4-(3-methylphenyl)-1, 3-thiazol-5-yl]-2-pyridyl]benzamide (TAK-715) as a potent and orally active anti-rheumatoid arthritis agent. J. Med. Chem.48, 5966–5979 (2005). ArticleCASPubMed Google Scholar
Brancho, D. et al. Mechanism of p38 MAP kinase activation in vivo. Genes Dev.17, 1969–1978 (2003). A genetic analysis of the roles of distinct MAPKKs in the activation of p38α by different stimuli. ArticleCASPubMedPubMed Central Google Scholar
Wysk, M., Yang, D. D., Lu, H. T., Flavell, R. A. & Davis, R. J. Requirement of mitogen-activated protein kinase kinase 3 (MKK3) for tumor necrosis factor-induced cytokine expression. Proc. Natl Acad. Sci. USA96, 3763–3768 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, N. et al. Differential involvement of p38 mitogen-activated protein kinase kinases MKK3 and MKK6 in T-cell apoptosis. EMBO Rep.3, 785–791 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lu, H. T. et al. Defective IL-12 production in mitogen-activated protein (MAP) kinase kinase 3 (Mkk3)-deficient mice. EMBO J.18, 1845–1857 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bulavin, D. V. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J.18, 6845–6854 (1999). ArticleCASPubMedPubMed Central Google Scholar
Bulavin, D. V. & Fornace, A. J. J. p38 MAP kinase's emerging role as a tumor suppressor. Adv. Cancer Res.92, 95–118 (2004). ArticleCASPubMed Google Scholar
Brewer, J. A., Kanagawa, O., Sleckman, B. P. & Muglia, L. J. Thymocyte apoptosis induced by T cell activation is mediated by glucocorticoids in vivo. J. Immunol.169, 1837–1843 (2002). ArticleCASPubMed Google Scholar
Suzuki, H. et al. Involvement of MKK6 in TCRαβintCD69lo: a target population for apoptotic cell death in thymocytes. FASEB J.17, 1538–1540 (2003). ArticleCASPubMed Google Scholar
Rincon, M. MAP-kinase signaling pathways in T cells. Curr. Opin. Immunol.13, 339–345 (2001). ArticleCASPubMed Google Scholar
Pedraza-Alva, G. et al. Activation of p38 MAP kinase by DNA double-strand breaks in V(D)J recombination induces a G2/M cell cycle checkpoint. EMBO J.25, 763–773 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature372, 739–746 (1994). ArticleCASPubMed Google Scholar
Kuida, K. & Boucher, D. M. Functions of MAP kinases: insights from gene-targeting studies. J. Biochem. (Tokyo)135, 653–656 (2004). ArticleCAS Google Scholar
Adams, R. H. et al. Essential role of p38α MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell.6, 109–116 (2000). ArticleCASPubMed Google Scholar
Kim, J. M., White, J. M., Shaw, A. S. & Sleckman, B. P. MAPK p38α is dispensable for lymphocyte development and proliferation. J. Immunol.174, 1239–1244 (2005). ArticleCASPubMed Google Scholar
Sabio, G. et al. p38γ regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO J.24, 1134–1145 (2005). ArticleCASPubMedPubMed Central Google Scholar
Frantz, B. et al. The activation state of p38 mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry37, 13846–13853 (1998). ArticleCASPubMed Google Scholar
Galan, A. et al. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J. Biol. Chem.275, 11418–11424 (2000). ArticleCASPubMed Google Scholar
Zhuang, S., Demirs, J. T. & Kochevar, I. E. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J. Biol. Chem.275, 25939–25948 (2000). ArticleCASPubMed Google Scholar
Bowie, A. G. & O'Neill, L. A. Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. J. Immunol.165, 7180–7188 (2000). ArticleCASPubMed Google Scholar
Matsuguchi, T., Musikacharoen, T., Ogawa, T. & Yoshikai, Y. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J. Immunol.165, 5767–5772 (2000). ArticleCASPubMed Google Scholar
Park, S. J. & Kim, I. S. The role of p38 MAPK activation in auranofin-induced apoptosis of human promyelocytic leukaemia HL-60 cells. Br. J. Pharmacol.146, 506–513 (2005). ArticleCASPubMedPubMed Central Google Scholar
Barancik, M., Htun, P., Strohm, C., Kilian, S. & Schaper, W. Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J. Cardiovasc. Pharmacol.35, 474–483 (2000). ArticleCASPubMed Google Scholar
Park, M. T. et al. Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells. J. Biol. Chem.278, 50624–50634 (2003). ArticleCASPubMed Google Scholar
Ge, B. et al. MAPKK-independent activation of p38α mediated by TAB1-dependent autophosphorylation of p38α. Science295, 1291–1294 (2002). This study identified TAB1 as a binding partner and activator of p38α that is independent of the classical MAPK cascade. ArticleCASPubMed Google Scholar
Jiang, Y. et al. Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection. J. Biol. Chem.272, 11096–11102 (1997). ArticleCASPubMed Google Scholar
Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science272, 1179–1182 (1996). ArticleCASPubMed Google Scholar
Shim, J. H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev.19, 2668–2681 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ge, B. et al. TAB1β (transforming growth factor-β-activated protein kinase 1-binding protein 1β), a novel splicing variant of TAB1 that interacts with p38α but not TAK1. J. Biol. Chem.278, 2286–2293 (2003). ArticleCASPubMed Google Scholar
Tanno, M. et al. Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia. Circ. Res.93, 254–261 (2003). ArticleCASPubMed Google Scholar
Matsuyama, W., Faure, M. & Yoshimura, T. Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-β-activated protein kinase 1 binding protein 1β/p38α mitogen-activated protein kinase signaling cascade. J. Immunol.171, 3520–3532 (2003). ArticleCASPubMed Google Scholar
Kim, L. et al. p38 MAPK autophosphorylation drives macrophage IL-12 production during intracellular infection. J. Immunol.174, 4178–4184 (2005). ArticleCASPubMed Google Scholar
Ohkusu-Tsukada, K., Tominaga, N., Udono, H. & Yui, K. Regulation of the maintenance of peripheral T-cell anergy by TAB1-mediated p38α activation. Mol. Cell. Biol.24, 6957–6966 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ohkusu-Tsukada, K., Tominaga, N., Udono, H. & Yui, K. Erratum: Regulation of the maintenance of peripheral T-cell anergy by TAB1 mediated p38α activation. Mol. Cell. Biol.25, 8763 (2005). ArticleCASPubMedPubMed Central Google Scholar
Salojin, K. V., Zhang, J. & Delovitch, T. L. TCR and CD28 are coupled via ZAP-70 to the activation of the Vav/Rac-1-/PAK-1/p38 MAPK signaling pathway. J. Immunol.163, 844–853 (1999). CASPubMed Google Scholar
Yu, H., Leitenberg, D., Li, B. & Flavell, R. A. Deficiency of small GTPase Rac2 affects T cell activation. J. Exp. Med.194, 915–926 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fornace, A. J. Jr et al. Mammalian genes coordinately regulate by growth arrest signals and DNA-damaging agents. Mol. Cell. Biol.9, 4196–4203 (1989). ArticleCASPubMedPubMed Central Google Scholar
Takekawa, M. & Saito, H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell95, 521–530 (1998). ArticleCASPubMed Google Scholar
Zhan, Q. et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene18, 2892–2900 (1999). ArticleCASPubMed Google Scholar
Mita, H., Tsutsui, J., Takekawa, M., Witten, E. A. & Saito, H. Regulation of MTK1/MEKK4 kinase activity by its N-terminal autoinhibitory domain and GADD45 binding. Mol. Cell. Biol.22, 4544–4555 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lu, B. et al. GADD45α mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity14, 583–590 (2001). This study used gene-targeted mice to show a link between a GADD45-family member and p38α and JNK activation in T cells and TH1-cell differentiation. ArticleCASPubMed Google Scholar
Lu, B., Ferrandino, A. F. & Flavell, R. A. Gadd45β is important for perpetuating cognate and inflammatory signals in T cells. Nature Immunol.5, 38–44 (2004). ArticleCAS Google Scholar
Chi, H., Lu, B., Takekawa, M., Davis, R. J. & Flavell, R. A. GADD45β/GADD45γ and MEKK4 comprise a genetic pathway mediating STAT4-independent IFNγ production in T cells. EMBO J.23, 1576–1586 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hollander, M. C. et al. Genomic instability in _Gadd45a_-deficient mice. Nature Genet.23, 176–184 (1999). ArticleCASPubMed Google Scholar
Bulavin, D. V., Kovalsky, O., Hollander, M. C. & Fornace, A. J. J. Loss of oncogenic H-ras-induced cell cycle arrest and p38 mitogen-activated protein kinase activation by disruption of Gadd45 a. Mol. Cell. Biol.23, 3859–3871 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hildesheim, J. et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res.62, 7305–7315 (2002). CASPubMed Google Scholar
Salvador, J. M. et al. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity16, 499–508 (2002). ArticleCASPubMed Google Scholar
Salvador, J. M., Mittelstadt, P. R., Belova, G. I., Fornace, A. J. Jr & Ashwell, J. D. The autoimmune suppressor Gadd45α inhibits the T cell alternative p38 activation pathway. Nature Immunol.6, 396–402 (2005). The description of GADD45α as a physiological inhibitor of p38 activated by Tyr323 phosphorylation. ArticleCAS Google Scholar
Salvador, J. M. et al. Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nature Immunol.6, 390–395 (2005). This study describes the activation of p38α and p38β by phosphorylation of Tyr323 in the absence of upstream MAPKK activation. ArticleCAS Google Scholar
Finco, T. S., Kadlecek, T., Zhang, W., Samelson, L. E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity9, 617–626 (1998). ArticleCASPubMed Google Scholar
Khokhlatchev, A. V. et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell93, 605–615 (1998). ArticleCASPubMed Google Scholar
Mittelstadt, P. R., Salvador, J. M., Fornace, A. J. J. & Ashwell, J. D. Activating p38 MAPK: new tricks for an old kinase. Cell Cycle4, 1189–1192 (2005). ArticleCASPubMed Google Scholar
Biondi, R. M. & Nebreda, A. R. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem. J.372, 1–13 (2003). ArticleCASPubMedPubMed Central Google Scholar
Holland, P. M. & Cooper, J. A. Protein modification: docking sites for kinases. Curr. Biol.9, R329–R331 (1999). ArticleCASPubMed Google Scholar
Fantz, D. A., Jacobs, D., Glossip, D. & Kornfeld, K. Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues. J. Biol. Chem.276, 27256–27265 (2001). ArticleCASPubMed Google Scholar
Gavin, A. C. & Nebreda, A. R. A MAP kinase docking site is required for phosphorylation and activation of p90rsk/MAPKAP kinase-1. Curr. Biol.9, 281–284 (1999). ArticleCASPubMed Google Scholar
Chang, C. I., Xu, B. E., Akella, R., Cobb, M. H. & Goldsmith, E. J. Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol. Cell9, 1241–1249 (2002). ArticleCASPubMed Google Scholar