Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C. W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene285, 1–24 (2002). ArticleCASPubMed Google Scholar
Levy, D. E. & Darnell, J. E. J. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol.3, 651–662 (2002). An excellent review of basic mechanisms of STAT activation and function. ArticleCAS Google Scholar
Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem.67, 227–264 (1998). ArticleCASPubMed Google Scholar
Becker, S., Groner, B. & Muller, C. W. Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature394, 145–151 (1998). ArticleCASPubMed Google Scholar
Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell93, 827–839 (1998). ArticleCASPubMed Google Scholar
Mao, X. et al. Structural bases of unphosphorylated STAT1 association and receptor binding. Mol. Cell17, 761–771 (2005). ArticleCASPubMed Google Scholar
Neculai, D. et al. Structure of the unphosphorylated STAT5a dimer. J. Biol. Chem.280, 40782–40787 (2005). References 6–9 solved the crystal structures of tyrosine phosphorylated STAT dimers bound to DNA, and unphosphorylated STAT oligomers. ArticleCASPubMed Google Scholar
Stancato, L. F., David, M., Carter-Su, C., Larner, A. C. & Pratt, W. B. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation. J. Biol. Chem.271, 4134–4137 (1996). ArticleCASPubMed Google Scholar
Yeh, T. C. & Pellegrini, S. The Janus kinase family of protein tyrosine kinases and their role in signaling. Cell. Mol. Life Sci.55, 1523–1534 (1999). ArticleCASPubMed Google Scholar
Greenlund, A. C. et al. Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity2, 677–687 (1995). ArticleCASPubMed Google Scholar
Marrero, M. B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature375, 247–250 (1995). ArticleCASPubMed Google Scholar
McWhinney, C. D., Dostal, D. & Baker, K. Angiotensin II activates Stat5 through Jak2 kinase in cardiac myocytes. J. Mol. Cell. Cardiol.30, 751–761 (1998). ArticleCASPubMed Google Scholar
Mellado, M., Rodriguez-Frade, J. M., Manes, S. & Martinez, A. C. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu. Rev. Immunol.19, 397–421 (2001). ArticleCASPubMed Google Scholar
Wong, M. & Fish, E. N. RANTES and MIP-1α activate stats in T cells. J. Biol. Chem.273, 309–314 (1998). ArticleCASPubMed Google Scholar
David, M. et al. STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J. Biol. Chem.271, 9185–9188 (1996). ArticleCASPubMed Google Scholar
Olayioye, M. A., Beuvink, I., Horsch, K., Daly, J. M. & Hynes, N. E. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J. Biol. Chem.274, 17209–17218 (1999). ArticleCASPubMed Google Scholar
Park, O. K., Schaefer, T. S. & Nathans, D. In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc. Natl Acad. Sci. USA93, 13704–13708 (1996). ArticleCASPubMedPubMed Central Google Scholar
Vignais, M. L., Sadowski, H. B., Watling, D., Rogers, N. C. & Gilman, M. Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol. Cell. Biol.16, 1759–1769 (1996). ArticleCASPubMedPubMed Central Google Scholar
Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science269, 81–83 (1995). ArticleCASPubMed Google Scholar
Benekli, M., Baer, M. R., Baumann, H. & Wetzler, M. Signal transducer and activator of transcription proteins in leukemias. Blood101, 2940–2954 (2003). ArticleCASPubMed Google Scholar
Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene19, 2474–2488 (2000). ArticleCASPubMed Google Scholar
Danial, N. N. & Rothman, P. JAK–STAT signaling activated by Abl oncogenes. Oncogene19, 2523–2531 (2000). ArticleCASPubMed Google Scholar
Akira, S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells17, 138–146 (1999). ArticleCASPubMed Google Scholar
Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell84, 443–450 (1996). ArticleCASPubMed Google Scholar
Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell84, 431–442 (1996). ArticleCASPubMed Google Scholar
Park, C., Li, S., Cha, E. & Schindler, C. Immune response in Stat2 knockout mice. Immunity13, 795–804 (2000). ArticleCASPubMed Google Scholar
Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature382, 174–177 (1996). ArticleCASPubMed Google Scholar
Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature380, 630–633 (1996). ArticleCASPubMed Google Scholar
Thierfelder, W. E. et al. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature382, 171–174 (1996). ArticleCASPubMed Google Scholar
Cui, Y. et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol.24, 8037–8047 (2004). ArticleCASPubMedPubMed Central Google Scholar
Socolovsky, M., Fallon, A. E., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell98, 181–191 (1999). ArticleCASPubMed Google Scholar
Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell93, 841–850 (1998). ArticleCASPubMed Google Scholar
Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA94, 3801–3804 (1997). ArticleCASPubMedPubMed Central Google Scholar
Horvath, C. M. Silencing STATs: lessons from paramyxovirus interferon evasion. Cytokine Growth Factor Rev.15, 117–127 (2004). ArticleCASPubMed Google Scholar
Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol.148, 635–651 (2000). ArticleCASPubMedPubMed Central Google Scholar
Suntharalingam, M. & Wente, S. R. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell4, 775–789 (2003). ArticleCASPubMed Google Scholar
Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem.67, 265–306 (1998). ArticleCASPubMed Google Scholar
Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic6, 187–198 (2005). Recent review of nuclear trafficking processes. ArticleCASPubMed Google Scholar
Bednenko, J., Cingolani, G. & Gerace, L. Nucleocytoplasmic transport: navigating the channel. Traffic4, 127–135 (2003). ArticleCASPubMed Google Scholar
Peters, R. Translocation through the nuclear pore complex: selectivity and speed by reduction-of-dimensionality. Traffic6, 421–427 (2005). ArticleCASPubMed Google Scholar
Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol.13, 622–628 (2003). ArticleCASPubMed Google Scholar
Dingwall, C. & Laskey, R. A. Nuclear targeting sequences--a-consensus? Trends Biochem. Sci.16, 478–481 (1991). ArticleCASPubMed Google Scholar
Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol.15, 607–660 (1999). Comprehensive review of nuclear transport mechanisms. ArticleCASPubMed Google Scholar
Robbins, J., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell64, 615–623 (1991). ArticleCASPubMed Google Scholar
Cingolani, G., Petosa, C., Weis, K. & Muller, C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature399, 221–229 (1999). ArticleCASPubMed Google Scholar
Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell94, 193–204 (1998). ArticleCASPubMed Google Scholar
Herold, A., Truant, R., Wiegand, H. & Cullen, B. R. Determination of the functional domain organization of the importin α nuclear import factor. J. Cell Biol.143, 309–318 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct. Biol.6, 388–397 (1999). ArticleCASPubMed Google Scholar
Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Gorlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell90, 1061–1071 (1997). ArticleCASPubMed Google Scholar
Kohler, M. et al. Evidence for distinct substrate specificities of importin α family members in nuclear protein import. Mol. Cell. Biol.19, 7782–7791 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yoneda, Y. Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells5, 777–787 (2000). ArticleCASPubMed Google Scholar
Christophe, D., Christophe-Hobertus, C. & Pichon, B. Nuclear targeting of proteins: how many different signals? Cell. Signal.12, 337–341 (2000). ArticleCASPubMed Google Scholar
Strom, A. C. & Weis, K. Importin-β-like nuclear transport receptors. Genome Biol.2, 3008 (2001). Article Google Scholar
Wen, W., Meinkoth, J. L., Tsien, R. Y. & Taylor, S. S. Identification of a signal for rapid export of proteins from the nucleus. Cell82, 463–473 (1995). ArticleCASPubMed Google Scholar
Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell90, 1051–1060 (1997). ArticleCASPubMed Google Scholar
Petosa, C. et al. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol. Cell16, 761–775 (2004). ArticleCASPubMed Google Scholar
Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res.242, 540–547 (1998). ArticleCASPubMed Google Scholar
Wolff, B., Sanglier, J. J. & Wang, Y. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo- cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem. Biol.4, 139–147 (1997). ArticleCASPubMed Google Scholar
Fu, X. Y. A transcription factor with SH2 and SH3 domains is directly activated by an interferon α-induced cytoplasmic protein tyrosine kinase(s). Cell70, 323–335 (1992). ArticleCASPubMed Google Scholar
Gutch, M. J., Daly, C. & Reich, N. C. Tyrosine phosphorylation is required for activation of an α interferon-stimulated transcription factor. Proc. Natl Acad. Sci. USA89, 11411–11415 (1992). ArticleCASPubMedPubMed Central Google Scholar
Schindler, C., Shuai, K., Prezioso, V. R. & Darnell, J. E., Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science257, 809–813 (1992). ArticleCASPubMed Google Scholar
Shuai, K., Stark, G. R., Kerr, I. M. & Darnell, J. E., Jr. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-γ. Science261, 1744–1746 (1993). References 67–70 demonstrated that direct tyrosine phosphorylation is responsible for STAT activation. ArticleCASPubMed Google Scholar
Schindler, C., Fu, X. Y., Improta, T., Aebersold, R. & Darnell, J. E., Jr. Proteins of transcription factor ISGF-3: one gene encodes the 91- and 84-kDa ISGF-3 proteins that are activated by interferon α. Proc. Natl Acad. Sci. USA89, 7836–7839 (1992). ArticleCASPubMedPubMed Central Google Scholar
Veals, S. A. et al. Subunit of an α-interferon-responsive transcription factor is related to interferon regulatory factor and Myb families of DNA-binding proteins. Mol. Cell. Biol.12, 3315–3324 (1992). ArticleCASPubMedPubMed Central Google Scholar
Banninger, G. & Reich, N. C. STAT2 nuclear trafficking. J. Biol. Chem.279, 39199–39206 (2004). First description of STAT2 nuclear shuttling dependent on a NES in its C terminus and on association with IRF9. ArticleCASPubMed Google Scholar
Mowen, K. & David, M. Role of the STAT1–SH2 domain and STAT2 in the activation and nuclear translocation of STAT1. J. Biol. Chem.273, 30073–30076 (1998). ArticleCASPubMed Google Scholar
Sekimoto, T., Imamoto, N., Nakajima, K., Hirano, T. & Yoneda, Y. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J.16, 7067–7077 (1997). First study to show that importin-α5 specifically recognizes the tyrosine phosphorylated STAT1 dimer. ArticleCASPubMedPubMed Central Google Scholar
Sekimoto, T., Nakajima, K., Tachibana, T., Hirano, T. & Yoneda, Y. Interferon-γ-dependent nuclear import of Stat1 is mediated by the GTPase activity of Ran/TC4. J. Biol. Chem.271, 31017–31020 (1996). ArticleCASPubMed Google Scholar
McBride, K. M., Banninger, G., McDonald, C. & Reich, N. C. Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-α. EMBO J.21, 1754–1763 (2002). Definitive evidence for a gain-of-function NLS in the DNA-binding domain of STAT1. ArticleCASPubMedPubMed Central Google Scholar
Melen, K. et al. Importin α nuclear localization signal binding sites for STAT1, STAT2, and influenza A virus nucleoprotein. J. Biol. Chem.278, 28193–28200 (2003). ArticleCASPubMed Google Scholar
Melen, K., Kinnunen, L. & Julkunen, I. Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J. Biol. Chem.276, 16447–16455 (2001). ArticleCASPubMed Google Scholar
LaCasse, E. C. & Lefebvre, Y. A. Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res.23, 1647–1656 (1995). ArticleCASPubMedPubMed Central Google Scholar
Fagerlund, R., Melen, K., Kinnunen, L. & Julkunen, I. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin α5. J. Biol. Chem.277, 30072–30078 (2002). ArticleCASPubMed Google Scholar
Strehlow, I. & Schindler, C. Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J. Biol. Chem.273, 28049–28056 (1998). ArticleCASPubMed Google Scholar
Subramaniam, P. S., Green, M. M., Larkin, J., Torres, B. A. & Johnson, H. M. Nuclear translocation of IFN-γ is an intrinsic requirement for its biologic activity and can be driven by a heterologous nuclear localization sequence. J. Interferon Cytokine Res.21, 951–959 (2001). ArticleCASPubMed Google Scholar
Marg, A. et al. Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J. Cell Biol.165, 823–833 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meyer, T., Begitt, A., Lodige, I., van Rossum, M. & Vinkemeier, U. Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J.21, 344–354 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chatterjee-Kishore, M., Wright, K. L., Ting, J. P. & Stark, G. R. How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J.19, 4111–4122 (2000). ArticleCASPubMedPubMed Central Google Scholar
Koster, M. & Hauser, H. Dynamic redistribution of STAT1 protein in IFN signaling visualized by GFP fusion proteins. Eur. J. Biochem.260, 137–144 (1999). ArticleCASPubMed Google Scholar
Begitt, A., Meyer, T., van Rossum, M. & Vinkemeier, U. Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc. Natl Acad. Sci. USA97, 10418–10423 (2000). ArticleCASPubMedPubMed Central Google Scholar
McBride, K. M., McDonald, C. & Reich, N. C. Nuclear export signal located within theDNA-binding domain of the STAT1 transcription factor. EMBO J.19, 6196–6206 (2000). Identification of an NES in the DNA-binding domain of STAT1, and evidence that DNA binding is necessary for STAT1 nuclear accumulation. ArticleCASPubMedPubMed Central Google Scholar
Haspel, R. L., Salditt-Georgieff, M. & Darnell, J. E., Jr. The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J.15, 6262–6268 (1996). ArticleCASPubMedPubMed Central Google Scholar
ten Hoeve, J. et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell. Biol.22, 5662–5668 (2002). First identification of a nuclear phosphatase that can dephosphorylate STAT1. ArticleCASPubMedPubMed Central Google Scholar
Shuai, K. & Liu, B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nature Rev. Immunol.5, 593–605 (2005). ArticleCAS Google Scholar
Zhong, M. et al. Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc. Natl Acad. Sci. USA102, 3966–3971 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fu, X. Y., Schindler, C., Improta, T., Aebersold, R. & Darnell, J. E., Jr. The proteins of ISGF-3, the interferon αlpha-induced transcriptional activator, define a gene family involved in signal transduction. Proc. Natl Acad. Sci. USA89, 7840–7843 (1992). ArticleCASPubMedPubMed Central Google Scholar
Lau, J. F., Parisien, J. P. & Horvath, C. M. Interferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors. Proc. Natl Acad. Sci. USA97, 7278–7283 (2000). ArticleCASPubMedPubMed Central Google Scholar
Martinez-Moczygemba, M., Gutch, M. J., French, D. L. & Reich, N. C. Distinct STAT structure promotes interaction of STAT2 with the p48 subunit of the interferon-α-stimulated transcription factor ISGF3. J. Biol. Chem.272, 20070–20076 (1997). ArticleCASPubMed Google Scholar
Akira, S. et al. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell77, 63–71 (1994). ArticleCASPubMed Google Scholar
Lutticken, C. et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science263, 89–92 (1994). ArticleCASPubMed Google Scholar
Wegenka, U. M., Buschmann, J., Lutticken, C., Heinrich, P. C. & Horn, F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol. Cell. Biol.13, 276–288 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zhong, Z., Wen, Z. & Darnell, J. E., Jr. Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc. Natl Acad. Sci. USA91, 4806–4810 (1994). ArticleCASPubMedPubMed Central Google Scholar
Liu, L., McBride, K. M. & Reich, N. C. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-α3. Proc. Natl Acad. Sci. USA102, 8150–8155 (2005). First report showing that importin-α3 is responsible for STAT3 nuclear import independent of tyrosine phosphorylation. ArticleCASPubMedPubMed Central Google Scholar
Pranada, A. L., Metz, S., Herrmann, A., Heinrich, P. C. & Muller-Newen, G. Real time analysis of STAT3 nucleocytoplasmic shuttling. J. Biol. Chem.279, 15114–15123 (2004). ArticleCASPubMed Google Scholar
Kohler, M. et al. Cloning of two novel human importin-α subunits and analysis of the expression pattern of the importin-α protein family. FEBS Lett.417, 104–108 (1997). ArticleCASPubMed Google Scholar
Kohler, M., Gorlich, D., Hartmann, E. & Franke, J. Adenoviral E1A protein nuclear import is preferentially mediated by importin α3 in vitro. Virology289, 186–191 (2001). ArticleCASPubMed Google Scholar
Welch, K., Franke, J., Kohler, M. & Macara, I. G. RanBP3 contains an unusual nuclear localization signal that is imported preferentially by importin-α3. Mol. Cell. Biol.19, 8400–8411 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ma, J. & Cao, X. Regulation of Stat3 nuclear import by importin α5 and importin α7 via two different functional sequence elements. Cell. Signal.18, 1117–1126 (2006). ArticleCASPubMed Google Scholar
Ma, J., Zhang, T., Novotny-Diermayr, V., Tan, A. L. & Cao, X. A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J. Biol. Chem.278, 29252–29260 (2003). ArticleCASPubMed Google Scholar
Yang, J. et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res.65, 939–947 (2005). CASPubMed Google Scholar
Ivanov, V. N. et al. Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol. Cell7, 517–528 (2001). ArticleCASPubMed Google Scholar
Zhang, X., Wrzeszczynska, M. H., Horvath, C. M. & Darnell, J. E., Jr. Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol. Cell. Biol.19, 7138–7146 (1999). ArticleCASPubMedPubMed Central Google Scholar
Liu, L. et al. Identification of STAT3 as a specific substrate of breast tumor kinase. Oncogene (in the press).
Zeng, R., Aoki, Y., Yoshida, M., Arai, K. & Watanabe, S. Stat5B shuttles between cytoplasm and nucleus in a cytokine-dependent and-independent manner. J. Immunol.168, 4567–4575 (2002). ArticleCASPubMed Google Scholar
Herrington, J., Rui, L., Luo, G., Yu-Lee, L. Y. & Carter-Su, C. A functional DNA binding domain is required for growth hormone-induced nuclear accumulation of Stat5B. J. Biol. Chem.274, 5138–5145 (1999). References 115 and 116 indicate that the nuclear shuttling of STAT5 and its nuclear accumulation depend on DNA binding. ArticleCASPubMed Google Scholar
Dormann, D., Abe, T., Weijer, C. J. & Williams, J. Inducible nuclear translocation of a STAT protein in Dictyostelium prespore cells: implications for morphogenesis and cell-type regulation. Development128, 1081–1088 (2001). CASPubMed Google Scholar
Fukuzawa, M., Abe, T. & Williams, J. G. The Dictyostelium prestalk cell inducer DIF regulates nuclear accumulation of a STAT protein by controlling its rate of export from the nucleus. Development130, 797–804 (2003). ArticleCASPubMed Google Scholar
Hou, S. X., Zheng, Z., Chen, X. & Perrimon, N. The Jak/STAT pathway in model organisms: emerging roles in cell movement. Dev. Cell3, 765–778 (2002). ArticleCASPubMed Google Scholar
Kieslinger, M. et al. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev.14, 232–244 (2000). CASPubMedPubMed Central Google Scholar
Lin, C. C. et al. Characterization of two mosquito STATs, AaSTAT and CtSTAT. Differential regulation of tyrosine phosphorylation and DNA binding activity by lipopolysaccharide treatment and by Japanese encephalitis virus infection. J. Biol. Chem.279, 3308–3317 (2004). ArticleCASPubMed Google Scholar
Oates, A. C. et al. Zebrafish stat3 is expressed in restricted tissues during embryogenesis and stat1 rescues cytokine signaling in a STAT1-deficient human cell line. Dev. Dyn.215, 352–370 (1999). ArticleCASPubMed Google Scholar
Pascal, A., Riou, J. F., Carron, C., Boucaut, J. C. & Umbhauer, M. Cloning and developmental expression of STAT5 in Xenopus laevis. Mech. Dev.106, 171–174 (2001). ArticleCASPubMed Google Scholar
Wang, Y. & Levy, D. E. C. elegans STAT Cooperates with DAF-7/TGF-β signaling to repress dauer formation. Curr. Biol.16, 89–94 (2006). ArticleCASPubMed Google Scholar