Toll-like receptors as molecular switches (original) (raw)
Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila Toll–Dorsal pathway. Annu. Rev. Cell Dev. Biol.12, 393–416 (1996). ArticleCAS Google Scholar
Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol.4, 499–511 (2004). ArticleCAS Google Scholar
Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nature Immunol.5, 987–995 (2004). ArticleCAS Google Scholar
Beutler, B. & Poltorak, A. Sepsis and evolution of the innate immune response. Crit. Care Med.29, S2–S6; discussion S6–S7 (2001). ArticleCAS Google Scholar
Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA95, 588–593 (1998). ArticleCAS Google Scholar
Buchanan, S. G. S. & Gay, N. J. Structural and functional diversity in the leucine rich repeat family of proteins. Prog. Biophys. Mol. Biol.65, 1–44 (1996). ArticleCAS Google Scholar
Fan, Q. R. & Hendrickson, W. A. Structure of human follicle-stimulating hormone in complex with its receptor. Nature433, 269–277 (2005). ArticleCAS Google Scholar
Schimmele, B. & Pluckthun, A. Identification of a functional epitope of the Nogo receptor by a combinatorial approach using ribosome display. J. Mol. Biol.352, 229–241 (2005). ArticleCAS Google Scholar
Alder, M. N. et al. Diversity and function of adaptive immune receptors in a jawless vertebrate. Science310, 1970–1973 (2005). ArticleCAS Google Scholar
Weber, A. et al. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunol.4, 794–800 (2003). ArticleCAS Google Scholar
Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunol.3, 667–672 (2002). ArticleCAS Google Scholar
Inohara, N. & Nunez, G. ML – a conserved domain involved in innate immunity and lipid metabolism. Trends Biochem. Sci.27, 219–221 (2002). ArticleCAS Google Scholar
Gangloff, M. & Gay, N. J. MD-2: the Toll 'gatekeeper' in endotoxin signalling. Trends Biochem. Sci.29, 294–300 (2004). ArticleCAS Google Scholar
Hailman, E. et al. Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J. Exp. Med.179, 269–277 (1994). ArticleCAS Google Scholar
Weber, A. N., Moncrieffe, M. C., Gangloff, M., Imler, J. L. & Gay, N. J. Ligand–receptor and receptor–receptor interactions act in concert to activate signaling in the Drosophila Toll pathway. J. Biol. Chem.280, 22793–22799 (2005). ArticleCAS Google Scholar
Winans, K. A. & Hashimoto, C. Ventralization of the Drosophila embryo by deletion of extracellular leucine-rich repeats in the Toll protein. Mol. Biol. Cell6, 587–596 (1995). ArticleCAS Google Scholar
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr . A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997). ArticleCAS Google Scholar
Schneider, D. S., Hudson, K. L., Lin, T. Y. & Anderson, K. V. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal ventral polarity in the Drosophila embryo. Genes Dev.5, 797–807 (1991). ArticleCAS Google Scholar
Hu, X., Yagi, Y., Tanji, T., Zhou, S. & Ip, Y. T. Multimerization and interaction of Toll and Spätzle in Drosophila. Proc. Natl Acad. Sci. USA101, 9369–9374 (2004). ArticleCAS Google Scholar
Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med.189, 1777–1782 (1999). ArticleCAS Google Scholar
Matsumoto, M., Kikkawa, S., Kohase, M., Miyake, K. & Seya, T. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun.293, 1364–1369 (2002). ArticleCAS Google Scholar
Koshland, D. E. Jr . The structural basis of negative cooperativity: receptors and enzymes. Curr. Opin. Struct. Biol.6, 757–761 (1996). ArticleCAS Google Scholar
Urizar, E. et al. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J.24, 1954–1964 (2005). ArticleCAS Google Scholar
He, X. L. & Garcia, K. C. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science304, 870–875 (2004). ArticleCAS Google Scholar
Bell, J. K. et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl Acad. Sci. USA102, 10976–10980 (2005). ArticleCAS Google Scholar
Choe, J., Kelker, M. S. & Wilson, I. A. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science309, 581–585 (2005). ArticleCAS Google Scholar
Kirk, P. & Bazan, J. F. Pathogen recognition: TLRs throw us a curve. Immunity23, 347–350 (2005). ArticleCAS Google Scholar
Bell, J. K., Askins, J., Hall, P. R., Davies, D. R. & Segal, D. M. The dsRNA binding site of human Toll-like receptor 3. Proc. Natl Acad. Sci. USA103, 8792–8797 (2006). ArticleCAS Google Scholar
O'Neill, L. A. J., Fitzgerald, K. A. & Bowie, A. G. The Toll–IL-1 receptor adaptor family grows to five members. Trends Immunol.24, 286–290 (2003). Article Google Scholar
Xu, Y. W. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature408, 111–115 (2000). ArticleCAS Google Scholar
Dunne, A., Ejdeback, M., Ludidi, P., O'Neill, L. A. J. & Gay, N. J. Structural complementarity of Toll/interleukin-1 receptor identity regions in Toll-like receptors and the adaptors Mal and MyD88. J. Biol. Chem.278, 41443–41451 (2003). ArticleCAS Google Scholar
Fitzgerald, K. A. et al. LPS–TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med.198, 1043–1055 (2003). ArticleCAS Google Scholar
Lu, X., Gross, A. W. & Lodish, H. F. Active conformation of the erythropoietin receptor: random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane domains. J. Biol. Chem.281, 7002–7011 (2006). ArticleCAS Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCAS Google Scholar
Tao, X., Xu, Y. W., Zheng, Y., Beg, A. A. & Tong, L. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem. Biophys. Res. Commun.299, 216–221 (2002). ArticleCAS Google Scholar
Ronni, T. et al. Common interaction surfaces of the Toll-like receptor 4 cytoplasmic domain stimulate multiple nuclear targets. Mol. Cell. Biol.23, 2543–2555 (2003). ArticleCAS Google Scholar
Gioannini, T. L. et al. Isolation of an endotoxin–MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc. Natl Acad. Sci. USA101, 4186–4191 (2004). ArticleCAS Google Scholar
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001). ArticleCAS Google Scholar
Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA98, 9237–9242 (2001). ArticleCAS Google Scholar
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303, 1529–1531 (2004). ArticleCAS Google Scholar
Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature Immunol.3, 196–200 (2002). ArticleCAS Google Scholar
Bell, J. K. et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol.24, 528–533 (2003). ArticleCAS Google Scholar
Gibbard, R. J., Morley, P. J. & Gay, N. J. Conserved features in the extracellular domain of human Toll-like receptor 8 are essential for pH dependent signalling. J. Biol. Chem. 20 July 2006 (doi:10.1074/jbc.M605003200).
Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol.5, 190–198 (2004). ArticleCAS Google Scholar
Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA100, 6646–6651 (2003). ArticleCAS Google Scholar
Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature Immunol.7, 49–56 (2006). ArticleCAS Google Scholar
Husebye, H. et al. Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J.25, 683–692 (2006). ArticleCAS Google Scholar
Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell110, 669–672 (2002). ArticleCAS Google Scholar
Cho, H. S. et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature421, 756–760 (2003). ArticleCAS Google Scholar
Klosterman, P. S., Shah, S. A. & Steitz, T. A. Crystal structures of two plasmid copy control related RNA duplexes: an 18 base pair duplex at 1.20 Å resolution and a 19 base pair duplex at 1.55 Å resolution. Biochemistry38, 14784–14792 (1999). ArticleCAS Google Scholar
Mizuguchi, K., Parker, J. S., Blundell, T. L. & Gay, N. J. Getting knotted: a model for the structure and activation of Spätzle. Trends Biochem. Sci.23, 239–242 (1998). ArticleCAS Google Scholar