Calcium signalling in lymphocyte activation and disease (original) (raw)
Lewis, R. S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol.19, 497–521 (2001). ArticleCASPubMed Google Scholar
Parekh, A. B. & Putney, J. W. Jr. Store-operated calcium channels. Physiol. Rev.85, 757–810 (2005). ArticleCASPubMed Google Scholar
Prakriya, M. & Lewis, R. S. CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium33, 311–321 (2003). References 1–3 are detailed reviews of the biophysical properties, molecular nature and role of the CRAC and other store-operated Ca2+channels. ArticleCASPubMed Google Scholar
Partiseti, M. et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J. Biol. Chem.269, 32327–32335 (1994). CASPubMed Google Scholar
Le Deist, F. et al. A primary T-cell immunodeficiency associated with defective transmembrane calcium influx. Blood85, 1053–1062 (1995). CASPubMed Google Scholar
Feske, S., Prakriya, M., Rao, A. & Lewis, R. S. A severe defect in CRAC Ca2+ channel activation and altered K+ channel gating in T cells from immunodeficient patients. J. Exp. Med.202, 651–662 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lewis, R. S. The molecular choreography of a store-operated calcium channel. Nature446, 284–287 (2007). This review describes the discovery of STIM1 and ORAI1 as components of the SOCE pathway. CASPubMed Google Scholar
Asherson, G. L., Davey, M. J. & Goodford, P. J. Increased uptake of calcium by human lymphocytes treated with phytohaemagglutinin. J. Physiol.206, 32P–33P (1970). CASPubMed Google Scholar
Whitfield, J. F., Perris, A. D. & Youdale, T. The role of calcium in the mitotic stimulation of rat thymocytes by detergents, agmatine and poly-L-lysine. Exp. Cell. Res.53, 155–165 (1968). ArticleCASPubMed Google Scholar
Weiss, A., Imboden, J., Shoback, D. & Stobo, J. Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. Proc. Natl Acad. Sci. USA81, 4169–4173 (1984). ArticleCASPubMedPubMed Central Google Scholar
Feske, S. et al. Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol.26, 2119–2126 (1996). ArticleCASPubMed Google Scholar
Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. & Rao, A. Gene regulation by calcium influx in T lymphocytes. Nature Immunol.2, 316–324 (2001). This study investigates the role of SOCE on global gene-expression patterns in T cells. ArticleCAS Google Scholar
Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature441, 179–185 (2006). This paper, together with references78and79, describes the initial identification of ORAI1 as a plasma membrane protein essential for SOCE. Mutations in ORAI1 are shown to be the cause of abrogated CRAC channel function in T cells from human patients with immunodeficiencies. ArticleCASPubMed Google Scholar
Feske, S., Okamura, H., Hogan, P. G. & Rao, A. Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun.311, 1117–1132 (2003). ArticleCASPubMed Google Scholar
Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev.17, 2205–2232 (2003). ArticleCASPubMed Google Scholar
Randriamampita, C. & Trautmann, A. Ca2+ signals and T lymphocytes; 'New mechanisms and functions in Ca2+ signalling'. Biol. Cell.96, 69–78 (2004). ArticleCASPubMed Google Scholar
Gallo, E. M., Cante-Barrett, K. & Crabtree, G. R. Lymphocyte calcium signaling from membrane to nucleus. Nature Immunol.7, 25–32 (2006). ArticleCAS Google Scholar
Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol.28, 716–729 (1998). ArticleCASPubMed Google Scholar
Negulescu, P. A., Krasieva, T. B., Khan, A., Kerschbaum, H. H. & Cahalan, M. D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity4, 421–430 (1996). ArticleCASPubMed Google Scholar
Bhakta, N. R., Oh, D. Y. & Lewis, R. S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nature Immunol.6, 143–151 (2005). References18–20are imaging studies showing the relationship between intracellular Ca2+concentrations and T-cell function, in particular T-cell motility, immunological synapse formation and positive selection of thymocytes. ArticleCAS Google Scholar
Trambas, C. M. & Griffiths, G. M. Delivering the kiss of death. Nature Immunol.4, 399–403 (2003). ArticleCAS Google Scholar
Lyubchenko, T. A., Wurth, G. A. & Zweifach, A. Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity15, 847–859 (2001). An elegant demonstration of the role of Ca2+signals for the cytolytic function of CTLs. ArticleCASPubMed Google Scholar
Poenie, M., Tsien, R. Y. & Schmitt-Verhulst, A. M. Sequential activation and lethal hit measured by [Ca2+]i in individual cytolytic T cells and targets. EMBO J.6, 2223–2232 (1987). ArticleCASPubMedPubMed Central Google Scholar
Macian, F. NFAT proteins: key regulators of T-cell development and function. Nature Rev. Immunol.5, 472–484 (2005). ArticleCAS Google Scholar
Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature386, 855–858 (1997). This paper elegantly shows how the shape and duration of Ca2+influx influences the activation of different transcription factors and some of their target genes. ArticleCASPubMed Google Scholar
Cristillo, A. D. & Bierer, B. E. Identification of novel targets of immunosuppressive agents by cDNA-based microarray analysis. J. Biol. Chem.277, 4465–4476 (2002). ArticleCASPubMed Google Scholar
Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl Acad. Sci. USA99, 11796–11801 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fanger, C. M., Hoth, M., Crabtree, G. R. & Lewis, R. S. Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J. Cell. Biol.131, 655–667 (1995). ArticleCASPubMed Google Scholar
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell109, 719–731 (2002). ArticleCASPubMed Google Scholar
Winslow, M. M., Neilson, J. R. & Crabtree, G. R. Calcium signalling in lymphocytes. Curr. Opin. Immunol.15, 299–307 (2003). ArticleCASPubMed Google Scholar
Gauld, S. B., Benschop, R. J., Merrell, K. T. & Cambier, J. C. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nature Immunol.6, 1160–1167 (2005). ArticleCAS Google Scholar
Heissmeyer, V. & Rao, A. E3 ligases in T cell anergy—turning immune responses into tolerance. Sci. STKE2004, pe29 (2004). PubMed Google Scholar
Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunol.5, 255–265 (2004). ArticleCAS Google Scholar
Rogers, P. R., Huston, G. & Swain, S. L. High antigen density and IL-2 are required for generation of CD4 effectors secreting Th1 rather than Th0 cytokines. J. Immunol.161, 3844–3852 (1998). CASPubMed Google Scholar
Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med.182, 1591–1596 (1995). ArticleCASPubMed Google Scholar
Leitenberg, D. & Bottomly, K. Regulation of naive T cell differentiation by varying the potency of TCR signal transduction. Semin. Immunol.11, 283–292 (1999). ArticleCASPubMed Google Scholar
Sloan-Lancaster, J., Steinberg, T. H. & Allen, P. M. Selective loss of the calcium ion signaling pathway in T cells maturing toward a T helper 2 phenotype. J. Immunol.159, 1160–1168 (1997). CASPubMed Google Scholar
Gajewski, T. F., Schell, S. R. & Fitch, F. W. Evidence implicating utilization of different T cell receptor-associated signaling pathways by TH1 and TH2 clones. J. Immunol.144, 4110–4120 (1990). CASPubMed Google Scholar
von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol.15, 433–452 (1997). ArticleCASPubMed Google Scholar
Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science281, 416–419 (1998). ArticleCASPubMed Google Scholar
Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell94, 229–238 (1998). ArticleCASPubMed Google Scholar
Liao, X. C. & Littman, D. R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity3, 757–769 (1995). ArticleCASPubMed Google Scholar
Kurosaki, T. et al. Regulation of the phospholipase C-γ2 pathway in B cells. Immunol. Rev.176, 19–29 (2000). ArticleCASPubMed Google Scholar
Lucas, J. A., Miller, A. T., Atherly, L. O. & Berg, L. J. The role of Tec family kinases in T cell development and function. Immunol. Rev.191, 119–138 (2003). ArticleCASPubMed Google Scholar
van Leeuwen, J. E. & Samelson, L. E. T cell antigen-receptor signal transduction. Curr. Opin. Immunol.11, 242–248 (1999). ArticleCASPubMed Google Scholar
Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature355, 353–356 (1992). ArticleCASPubMed Google Scholar
Zweifach, A. & Lewis, R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl Acad. Sci. USA90, 6295–6299 (1993). ArticleCASPubMedPubMed Central Google Scholar
Prakriya, M. & Lewis, R. S. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J. Physiol.536, 3–19 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hsu, S. et al. Fundamental Ca2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway. J. Immunol.166, 6126–6133 (2001). ArticleCAS Google Scholar
Yue, L., Peng, J. B., Hediger, M. A. & Clapham, D. E. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature410, 705–709 (2001). ArticleCASPubMed Google Scholar
Mori, Y. et al. Transient receptor potential 1 regulates capacitative Ca2+ entry and Ca2+ release from endoplasmic reticulum in B lymphocytes. J. Exp. Med.195, 673–681 (2002). ArticleCASPubMedPubMed Central Google Scholar
Voets, T. et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J. Bio. Chem.276, 47767–47770 (2001). ArticleCAS Google Scholar
Badou, A. et al. Critical role for the β regulatory subunits of Cav channels in T lymphocyte function. Proc. Natl Acad. Sci. USA103, 15529–15534 (2006). ArticleCASPubMedPubMed Central Google Scholar
Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem.276, 125–132 (2001). ArticleCASPubMed Google Scholar
Labasi, J. M. et al. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J. Immunol.168, 6436–6445 (2002). ArticleCASPubMed Google Scholar
Adriouch, S. et al. Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J. Immunol.169, 4108–4112 (2002). ArticleCASPubMed Google Scholar
Randriamampita, C. & Tsien, R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature364, 809–814 (1993). ArticleCASPubMed Google Scholar
Patterson, R. L., van Rossum, D. B. & Gill, D. L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell98, 487–499 (1999). ArticleCASPubMed Google Scholar
Yao, Y., Ferrer-Montiel, A. V., Montal, M. & Tsien, R. Y. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell98, 475–485 (1999). ArticleCASPubMed Google Scholar
Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol.169, 435–445 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol.15, 1235–1241 (2005). References63and64report the identification of STIM1 as an essential regulator of SOCE through RNAi screens and demonstrate a role for the EF-hand domain of STIM1 in sensing Ca2+levels in the ER and show aggregation of STIM1 in puncta in the ER membrane following Ca2+store depletion. ArticleCASPubMedPubMed Central Google Scholar
Oritani, K. & Kincade, P. W. Identification of stromal cell products that interact with pre-B cells. J. Cell Biol.134, 771–782 (1996). ArticleCASPubMed Google Scholar
Sabbioni, S., Barbanti-Brodano, G., Croce, C. M. & Negrini, M. GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res.57, 4493–4497 (1997). CASPubMed Google Scholar
Manji, S. S. et al. STIM1: a novel phosphoprotein located at the cell surface. Biochim. Biophys. Acta1481, 147–155 (2000). ArticleCASPubMed Google Scholar
Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature437, 902–905 (2005). ArticleCASPubMedPubMed Central Google Scholar
Spassova, M. A. et al. STIM1 has a plasma membrane role in the activation of store-operated Ca2+ channels. Proc. Natl Acad. Sci. USA103, 4040–4045 (2006). ArticleCASPubMedPubMed Central Google Scholar
Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA103, 16704–16709 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl Acad. Sci. USA104, 9301–9306 (2007). ArticleCASPubMedPubMed Central Google Scholar
Luik, R., Wu, M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol.174, 815–825 (2006). References72and75are elegant imaging studies showing the presence of STIM1 clusters in regions of the ER apposed to the plasma membrane and the co-localization of STIM1 with sites of Ca2+influx. ArticleCASPubMedPubMed Central Google Scholar
Hauser, C. T. & Tsien, R. Y. A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure. Proc. Natl Acad. Sci. USA104, 3693–3697 (2007). ArticleCASPubMedPubMed Central Google Scholar
Williams, R. T. et al. Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim. Biophys. Acta1596, 131–137 (2002). ArticleCASPubMed Google Scholar
Wu, M., Buchanan, J., Luik, R. & Lewis, R. S. Ca2+ store depeltion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol.174, 803–813 (2006). ArticleCASPubMedPubMed Central Google Scholar
Williams, R. T. et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem. J.357, 673–685 (2001). ArticleCASPubMedPubMed Central Google Scholar
Soboloff, J. et al. STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ entry. Curr. Biol.16, 1465–1470 (2006). ArticleCASPubMed Google Scholar
Zhang, S. L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl Acad. Sci. USA103, 9357–9362 (2006). ArticleCASPubMedPubMed Central Google Scholar
Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature443, 230–233 (2006). References80, 83and84define ORAI1 as a component of the CRAC channel pore through site-directed mutagenesis of conserved glutamate residues, resulting in altered ion selectivity of the mutated CRAC channel. ArticleCASPubMed Google Scholar
Sather, W. A. & McCleskey, E. W. Permeation and selectivity in calcium channels. Annu. Rev. Physiol.65, 133–159 (2003). ArticleCASPubMed Google Scholar
Owsianik, G., D'Hoedt, D., Voets, T. & Nilius, B. Structure-function relationship of the TRP channel superfamily. Rev. Physiol. Biochem. Pharmacol.156, 61–90 (2006). ArticleCASPubMed Google Scholar
Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature443, 226–229 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gwack, Y. et al. Biochemical and functional characterization of Orai family proteins. J. Biol. Chem.282, 16232–16243 (2007). ArticleCASPubMed Google Scholar
Mercer, J. C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem.281, 24979–24990 (2006). ArticleCASPubMed Google Scholar
Lis, A. et al. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol.17, 794–800 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dehaven, W. I., Smyth, J. T., Boyles, R. R. & Putney, J. W. Jr. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J. Biol. Chem.282, 17548–17556 (2007). ArticleCASPubMed Google Scholar
Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem.281, 20661–20665 (2006). ArticleCASPubMed Google Scholar
Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nature Cell. Biol.8, 771–773 (2006). ArticleCASPubMed Google Scholar
Fujimoto, M., Poe, J. C., Hasegawa, M. & Tedder, T. F. CD19 amplification of B lymphocyte Ca2+ responses: a role for Lyn sequestration in extinguishing negative regulation. J. Biol. Chem.276, 44820–44827 (2001). ArticleCASPubMed Google Scholar
Tedder, T. F., Haas, K. M. & Poe, J. C. CD19–CD21 complex regulates an intrinsic Src family kinase amplification loop that links innate immunity with B-lymphocyte intracellular calcium responses. Biochem. Soc. Trans.30, 807–811 (2002). ArticleCASPubMed Google Scholar
van Zelm, M. C. et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med.354, 1901–1912 (2006). ArticleCASPubMed Google Scholar
Otipoby, K. L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature384, 634–637 (1996). ArticleCASPubMed Google Scholar
O'Keefe, T. L., Williams, G. T., Davies, S. L. & Neuberger, M. S. Hyperresponsive B cells in CD22-deficient mice. Science274, 798–801 (1996). ArticleCASPubMed Google Scholar
Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity5, 551–562 (1996). ArticleCASPubMed Google Scholar
Maeda, A., Kurosaki, M., Ono, M., Takai, T. & Kurosaki, T. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J. Exp. Med.187, 1355–1360 (1998). ArticleCASPubMedPubMed Central Google Scholar
Blery, M. et al. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc. Natl Acad. Sci. USA95, 2446–2451 (1998). ArticleCASPubMedPubMed Central Google Scholar
Muta, T. et al. A 13-amino-acid motif in the cytoplasmic domain of FcγRIIB modulates B-cell receptor signalling. Nature368, 70–73 (1994). ArticleCASPubMed Google Scholar
Maeda, A. et al. Paired immunoglobulin-like receptor B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1. Oncogene18, 2291–2297 (1999). ArticleCASPubMed Google Scholar
Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity13, 277–285 (2000). ArticleCASPubMed Google Scholar
O'Keefe, T. L., Williams, G. T., Batista, F. D. & Neuberger, M. S. Deficiency in CD22, a B cell-specific inhibitory receptor, is sufficient to predispose to development of high affinity autoantibodies. J. Exp. Med.189, 1307–1313 (1999). ArticleCASPubMedPubMed Central Google Scholar
Buckley, R. H. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu. Rev. Immunol.22, 625–655 (2004). ArticleCASPubMed Google Scholar
Notarangelo, L. et al. Primary immunodeficiency diseases: an update. J. Allergy Clin. Immunol.114, 677–687 (2004). ArticleCASPubMed Google Scholar
Rawlings, D. J. Bruton's tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin. Immunol.91, 243–253 (1999). ArticleCASPubMed Google Scholar
Takata, M. & Kurosaki, T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-γ2. J. Exp. Med.184, 31–40 (1996). ArticleCASPubMed Google Scholar
Fluckiger, A. C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J.17, 1973–1985 (1998). ArticleCASPubMedPubMed Central Google Scholar
Liu, K. Q., Bunnell, S. C., Gurniak, C. B. & Berg, L. J. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J. Exp. Med.187, 1721–1727 (1998). ArticleCASPubMedPubMed Central Google Scholar
Salzer, U. & Grimbacher, B. Common variable immunodeficiency: the power of co-stimulation. Semin. Immunol.18, 337–346 (2006). ArticleCASPubMed Google Scholar
Carter, R. H. & Fearon, D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science256, 105–107 (1992). ArticleCASPubMed Google Scholar
Wang, Y. & Carter, R. H. CD19 regulates B cell maturation, proliferation, and positive selection in the FDC zone of murine splenic germinal centers. Immunity22, 749–761 (2005). ArticleCASPubMed Google Scholar
Fehr, T. et al. Antiviral protection and germinal center formation, but impaired B cell memory in the absence of CD19. J. Exp. Med.188, 145–155 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fischer, M. B. et al. A defect in the early phase of T-cell receptor-mediated T-cell activation in patients with common variable immunodeficiency. Blood84, 4234–4241 (1994). CASPubMed Google Scholar
Bakowski, D., Glitsch, M. D. & Parekh, A. B. An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current ICRAC in RBL-1 cells. J. Physiol.532, 55–71 (2001). ArticleCASPubMedPubMed Central Google Scholar
Simon, H. U., Mills, G. B., Hashimoto, S. & Siminovitch, K. A. Evidence for defective transmembrane signaling in B cells from patients with Wiskott–Aldrich syndrome. J. Clin. Invest.90, 1396–1405 (1992). ArticleCASPubMedPubMed Central Google Scholar
Cianferoni, A. et al. Defective nuclear translocation of nuclear factor of activated T cells and extracellular signal-regulated kinase underlies deficient IL-2 gene expression in Wiskott–Aldrich syndrome. J. Allergy Clin. Immunol.116, 1364–1371 (2005). ArticleCASPubMed Google Scholar
Huang, W., Ochs, H. D., Dupont, B. & Vyas, Y. M. The Wiskott–Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-κB (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement. J. Immunol.174, 2602–2611 (2005). ArticleCASPubMed Google Scholar
Nolz, J. C. et al. The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr. Biol.16, 24–34 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pugh-Bernard, A. E. & Cambier, J. C. B cell receptor signaling in human systemic lupus erythematosus. Curr. Opin. Rheumatol.18, 451–455 (2006). ArticleCASPubMed Google Scholar
Liossis, S. N., Kovacs, B., Dennis, G., Kammer, G. M. & Tsokos, G. C. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J. Clin. Invest.98, 2549–2557 (1996). ArticleCASPubMedPubMed Central Google Scholar
Enyedy, E. J., Mitchell, J. P., Nambiar, M. P. & Tsokos, G. C. Defective FcγRIIb1 signaling contributes to enhanced calcium response in B cells from patients with systemic lupus erythematosus. Clin. Immunol.101, 130–135 (2001). ArticleCASPubMed Google Scholar
Hippen, K. L. et al. FcγRIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity7, 49–58 (1997). ArticleCASPubMed Google Scholar
Shultz, L. D., Rajan, T. V. & Greiner, D. L. Severe defects in immunity and hematopoiesis caused by SHP-1 protein-tyrosine-phosphatase deficiency. Trends Biotechnol.15, 302–307 (1997). ArticleCASPubMed Google Scholar
Hibbs, M. L. et al. Multiple defects in the immune system of _Lyn_-deficient mice, culminating in autoimmune disease. Cell83, 301–311 (1995). ArticleCASPubMed Google Scholar
Yu, P. et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase Cγ2 that specifically increases external Ca2+ entry. Immunity22, 451–465 (2005). ArticlePubMedCAS Google Scholar
Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature426, 454–460 (2003). ArticleCASPubMed Google Scholar
Beeton, C. et al. Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc. Natl Acad. Sci. USA98, 13942–13947 (2001). This study describes the use of highly specific K+ channel blockers (reviewed in reference131) for the inhibition of Ca2+influx in T cells and the modulation ofin vivoimmune responses in EAE. ArticleCASPubMedPubMed Central Google Scholar
Reich, E. P. et al. Blocking ion channel KCNN4 alleviates the symptoms of experimental autoimmune encephalomyelitis in mice. Eur. J. Immunol.35, 1027–1036 (2005). ArticleCASPubMed Google Scholar
Feske, S., Drager, R., Peter, H. H., Eichmann, K. & Rao, A. The duration of nuclear residence of NFAT determines the pattern of cytokine expression in human SCID T cells. J. Immunol.165, 297–305 (2000). ArticleCASPubMed Google Scholar
Aramburu, J., Heitman, J. & Crabtree, G. R. Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep.5, 343–348 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cahalan, M. D., Wulff, H. & Chandy, K. G. Molecular properties and physiological roles of ion channels in the immune system. J. Clin. Immunol.21, 235–252 (2001). ArticleCASPubMed Google Scholar
Bautista, D. M., Hoth, M. & Lewis, R. S. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J. Physiol.541, 877–894 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature427, 360–364 (2004). ArticleCASPubMed Google Scholar
Quintana, A. et al. Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. J. Biol. Chem.281, 40302–40309 (2006). ArticleCASPubMed Google Scholar
Bierer, B. E., Hollander, G., Fruman, D. & Burakoff, S. J. Cyclosporin A and FK506: molecular mechanisms of immunosuppression and probes for transplantation biology. Curr. Opin. Immunol.5, 763–773 (1993). ArticleCASPubMed Google Scholar