Lymphocyte calcium signaling from membrane to nucleus (original) (raw)
Bautista, D.M., Hoth, M. & Lewis, R.S. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J. Physiol. (Lond.)541, 877–894 (2002). ArticleCAS Google Scholar
Bautista, D.M. & Lewis, R.S. Modulation of plasma membrane calcium-ATPase activity by local calcium microdomains near CRAC channels in human T cells. J. Physiol. (Lond.)556, 805–817 (2004). ArticleCAS Google Scholar
Hoth, M., Fanger, C.M. & Lewis, R.S. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell Biol.137, 633–648 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hoth, M., Button, D.C. & Lewis, R.S. Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc. Natl. Acad. Sci. USA97, 10607–10612 (2000). ArticleCASPubMedPubMed Central Google Scholar
Makowska, A., Zablocki, K. & Duszynski, J. The role of mitochondria in the regulation of calcium influx into Jurkat cells. Eur. J. Biochem.267, 877–884 (2000). ArticleCASPubMed Google Scholar
Lewis, R.S. & Cahalan, M.D. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol.13, 623–653 (1995). ArticleCASPubMed Google Scholar
Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol.1, 11–21 (2000). ArticleCASPubMed Google Scholar
Lewis, R.S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol.19, 497–521 (2001). ArticleCASPubMed Google Scholar
Randriamampita, C. & Trautmann, A. Ca2+ signals and T lymphocytes; new mechanisms and functions in Ca2+ signalling. Biol. Cell.96, 69–78 (2004). ArticleCASPubMed Google Scholar
Huang, Y. & Wange, R.L. T cell receptor signaling: beyond complex complexes. J. Biol. Chem.279, 28827–28830 (2004). ArticleCASPubMed Google Scholar
Patterson, R.L. et al. Phospholipase C-γ is required for agonist-induced Ca2+ entry. Cell111, 529–541 (2002). ArticleCASPubMed Google Scholar
van Rossum, D.B. et al. Phospholipase Cγ1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature434, 99–104 (2005). ArticleCASPubMed Google Scholar
Yu, P. et al. Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C γ-2 that specifically increases external Ca2+ entry. Immunity22, 451–465 (2005). ArticlePubMedCAS Google Scholar
Stork, B. et al. Grb2 and the non-T cell activation linker NTAL constitute a Ca2+-regulating signal circuit in B lymphocytes. Immunity21, 681–691 (2004). ArticleCASPubMed Google Scholar
Singh, D.K. et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell121, 281–293 (2005). ArticleCASPubMed Google Scholar
Brdicka, T. et al. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med.196, 1617–1626 (2002). ArticleCASPubMedPubMed Central Google Scholar
Janssen, E., Zhu, M., Zhang, W. & Koonpaew, S. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol.4, 117–123 (2003). ArticleCASPubMed Google Scholar
Wang, Y. et al. Single and combined deletions of the NTAL/LAB and LAT adaptors minimally affect B-cell development and function. Mol. Cell. Biol.25, 4455–4465 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & Zhang, W. Positive and negative regulation of FcepsilonRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med.200, 991–1000 (2004). ArticleCASPubMedPubMed Central Google Scholar
Janssen, E., Zhu, M., Craven, B. & Zhang, W. Linker for activation of B cells: a functional equivalent of a mutant linker for activation of T cells deficient in phospholipase C-γ1 binding. J. Immunol.172, 6810–6819 (2004). ArticleCASPubMed Google Scholar
Koonpaew, S., Janssen, E., Zhu, M. & Zhang, W. The importance of three membrane-distal tyrosines in the adaptor protein NTAL/LAB. J. Biol. Chem.279, 11229–11235 (2004). ArticleCASPubMed Google Scholar
Penninger, J.M. & Crabtree, G.R. The actin cytoskeleton and lymphocyte activation. Cell96, 9–12 (1999). ArticleCASPubMed Google Scholar
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science285, 221–227 (1999). ArticleCASPubMed Google Scholar
Miletic, A.V., Swat, M., Fujikawa, K. & Swat, W. Cytoskeletal remodeling in lymphocyte activation. Curr. Opin. Immunol.15, 261–268 (2003). ArticleCASPubMed Google Scholar
Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol.4, 749–755 (2003). ArticleCASPubMed Google Scholar
Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science295, 1539–1542 (2002). ArticleCASPubMed Google Scholar
Holsinger, L.J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol.8, 563–572 (1998). ArticleCASPubMed Google Scholar
Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med.181, 577–584 (1995). ArticleCASPubMed Google Scholar
Rivas, F.V., O'Keefe, J.P., Alegre, M.L. & Gajewski, T.F. Actin cytoskeleton regulates calcium dynamics and NFAT nuclear duration. Mol. Cell. Biol.24, 1628–1639 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hao, S. & August, A. Actin depolymerization transduces the strength of B-cell receptor stimulation. Mol. Biol. Cell16, 2275–2284 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mills, J.W., Falsig Pedersen, S., Walmod, P.S. & Hoffmann, E.K. Effect of cytochalasins on F-actin and morphology of Ehrlich ascites tumor cells. Exp. Cell Res.261, 209–219 (2000). ArticleCASPubMed Google Scholar
Tybulewicz, V.L., Ardouin, L., Prisco, A. & Reynolds, L.F. Vav1: a key signal transducer downstream of the TCR. Immunol. Rev.192, 42–52 (2003). ArticleCASPubMed Google Scholar
Gomez, M., Tybulewicz, V. & Cantrell, D.A. Control of pre-T cell proliferation and differentiation by the GTPase Rac-I. Nat. Immunol.1, 348–352 (2000). ArticleCASPubMed Google Scholar
Zhang, J. et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med.190, 1329–1342 (1999). ArticleCASPubMedPubMed Central Google Scholar
Walmsley, M.J. et al. Critical roles for Rac1 and Rac2 GTPases in B cell development and signaling. Science302, 459–462 (2003). ArticleCASPubMed Google Scholar
Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B cell development and antigen receptor signaling. Nat. Immunol.2, 548–555 (2001). ArticleCASPubMed Google Scholar
Fischer, K.D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol.8, 554–562 (1998). ArticleCASPubMed Google Scholar
Snapper, S.B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol.77, 993–998 (2005). ArticleCASPubMed Google Scholar
Huang, W., Ochs, H.D., Dupont, B. & Vyas, Y.M. The Wiskott-Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-κB (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement. J. Immunol.174, 2602–2611 (2005). ArticleCASPubMed Google Scholar
Cannon, J.L. & Burkhardt, J.K. Differential roles for Wiskott-Aldrich syndrome protein in immune synapse formation and IL-2 production. J. Immunol.173, 1658–1662 (2004). ArticleCASPubMed Google Scholar
Silvin, C., Belisle, B. & Abo, A. A role for Wiskott-Aldrich syndrome protein in T-cell receptor-mediated transcriptional activation independent of actin polymerization. J. Biol. Chem.276, 21450–21457 (2001). ArticleCASPubMed Google Scholar
Tybulewicz, V.L. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol.17, 267–274 (2005). ArticleCASPubMed Google Scholar
Turner, M. B-cell development and antigen receptor signalling. Biochem. Soc. Trans.30, 812–815 (2002). ArticleCASPubMed Google Scholar
Caloca, M.J., Zugaza, J.L., Matallanas, D., Crespo, P. & Bustelo, X.R. Vav mediates Ras stimulation by direct activation of the GDP/GTP exchange factor Ras GRP1. EMBO J.22, 3326–3336 (2003). ArticleCASPubMedPubMed Central Google Scholar
Reynolds, L.F. et al. Vav1 transduces T cell receptor signals to the activation of the Ras/ERK pathway via LAT, Sos, and RasGRP1. J. Biol. Chem.279, 18239–18246 (2004). ArticleCASPubMed Google Scholar
Cannon, J.L. & Burkhardt, J.K. The regulation of actin remodeling during T-cell-APC conjugate formation. Immunol. Rev.186, 90–99 (2002). ArticleCASPubMed Google Scholar
Zeng, R. et al. SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J. Immunol.171, 1360–1368 (2003). ArticleCASPubMed Google Scholar
Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell97, 221–231 (1999). ArticleCASPubMed Google Scholar
Higgs, H.N. & Pollard, T.D. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem.70, 649–676 (2001). ArticleCASPubMed Google Scholar
Gomez, T.S. et al. Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat. Immunol.6, 261–270 (2005). ArticleCASPubMed Google Scholar
Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature355, 353–356 (1992). ArticleCASPubMed Google Scholar
Premack, B.A., McDonald, T.V. & Gardner, P. Activation of Ca2+ current in Jurkat T cells following the depletion of Ca2+ stores by microsomal Ca2+-ATPase inhibitors. J. Immunol.152, 5226–5240 (1994). CASPubMed Google Scholar
Zweifach, A. & Lewis, R.S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. USA90, 6295–6299 (1993). ArticleCASPubMedPubMed Central Google Scholar
Takemura, H., Hughes, A.R., Thastrup, O. & Putney, J.W., Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J. Biol. Chem.264, 12266–12271 (1989). ArticleCASPubMed Google Scholar
Fanger, C.M., Hoth, M., Crabtree, G.R. & Lewis, R.S. Characterization of T cell mutants with defects in capacitative calcium entry: genetic evidence for the physiological roles of CRAC channels. J. Cell Biol.131, 655–667 (1995). ArticleCASPubMed Google Scholar
Serafini, A.T. et al. Isolation of mutant T lymphocytes with defects in capacitative calcium entry. Immunity3, 239–250 (1995). ArticleCASPubMed Google Scholar
Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L.M. & Rao, A. Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol.2, 316–324 (2001). ArticleCASPubMed Google Scholar
Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol.169, 435–445 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhang, S.L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature437, 902–905 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ertel, E.A. et al. Nomenclature of voltage-gated calcium channels. Neuron25, 533–535 (2000). ArticleCASPubMed Google Scholar
Genazzani, A.A., Carafoli, E. & Guerini, D. Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc. Natl. Acad. Sci. USA96, 5797–5801 (1999). ArticleCASPubMedPubMed Central Google Scholar
Graef, I.A. et al. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature401, 703–708 (1999). ArticleCASPubMed Google Scholar
Freedman, B.D., Price, M.A. & Deutsch, C.J. Evidence for voltage modulation of IL-2 production in mitogen-stimulated human peripheral blood lymphocytes. J. Immunol.149, 3784–3794 (1992). CASPubMed Google Scholar
Price, M., Lee, S.C. & Deutsch, C. Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA86, 10171–10175 (1989). ArticleCASPubMedPubMed Central Google Scholar
Gomes, B. et al. Lymphocyte calcium signaling involves dihydropyridine-sensitive L-type calcium channels: facts and controversies. Crit. Rev. Immunol.24, 425–447 (2004). ArticleCASPubMed Google Scholar
Chandy, K.G., DeCoursey, T.E., Cahalan, M.D., McLaughlin, C. & Gupta, S. Voltage-gated potassium channels are required for human T lymphocyte activation. J. Exp. Med.160, 369–385 (1984). ArticleCASPubMed Google Scholar
Sadighi Akha, A.A. et al. Anti-Ig-induced calcium influx in rat B lymphocytes mediated by cGMP through a dihydropyridine-sensitive channel. J. Biol. Chem.271, 7297–7300 (1996). ArticleCASPubMed Google Scholar
Grafton, G., Stokes, L., Toellner, K.M. & Gordon, J. A non-voltage-gated calcium channel with L-type characteristics activated by B cell receptor ligation. Biochem. Pharmacol.66, 2001–2009 (2003). ArticleCASPubMed Google Scholar
Kotturi, M.F., Carlow, D.A., Lee, J.C., Ziltener, H.J. & Jefferies, W.A. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J. Biol. Chem.278, 46949–46960 (2003). ArticleCASPubMed Google Scholar
Kotturi, M.F. & Jefferies, W.A. Molecular characterization of L-type calcium channel splice variants expressed in human T lymphocytes. Mol. Immunol.42, 1461–1474 (2005). ArticleCASPubMed Google Scholar
Stokes, L., Gordon, J. & Grafton, G. Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major α pore-forming and auxiliary β-subunits. J. Biol. Chem.279, 19566–19573 (2004). ArticleCASPubMed Google Scholar
Clapham, D.E., Runnels, L.W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci.2, 387–396 (2001). ArticleCASPubMed Google Scholar
Gamberucci, A. et al. Diacylglycerol activates the influx of extracellular cations in T-lymphocytes independently of intracellular calcium-store depletion and possibly involving endogenous TRP6 gene products. Biochem. J.364, 245–254 (2002). ArticleCASPubMedPubMed Central Google Scholar
Philipp, S. et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J. Biol. Chem.278, 26629–26638 (2003). ArticleCASPubMed Google Scholar
Liu, X., Bandyopadhyay, B.C., Singh, B.B., Groschner, K. & Ambudkar, I.S. Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J. Biol. Chem.280, 21600–21606 (2005). ArticleCASPubMed Google Scholar
Zagranichnaya, T.K., Wu, X. & Villereal, M.L. Endogenous TRPC1, TRPC3 and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J. Biol. Chem.280, 29559–29569 (2005). ArticleCASPubMed Google Scholar
Lintschinger, B. et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J. Biol. Chem.275, 27799–27805 (2000). ArticleCASPubMed Google Scholar
Hardie, R.C. Regulation of TRP channels via lipid second messengers. Annu. Rev. Physiol.65, 735–759 (2003). ArticleCASPubMed Google Scholar
Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature397, 259–263 (1999). ArticleCASPubMed Google Scholar
Venkatachalam, K., Zheng, F. & Gill, D.L. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J. Biol. Chem.278, 29031–29040 (2003). ArticleCASPubMed Google Scholar
Yue, L., Peng, J.B., Hediger, M.A. & Clapham, D.E. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature410, 705–709 (2001). ArticleCASPubMed Google Scholar
Voets, T. et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J. Biol. Chem.276, 47767–47770 (2001). ArticleCASPubMed Google Scholar
Murakami, M. et al. Identification and characterization of the murine TRPM4 channel. Biochem. Biophys. Res. Commun.307, 522–528 (2003). ArticleCASPubMed Google Scholar
Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell109, 397–407 (2002). ArticleCASPubMed Google Scholar
Xu, X.Z., Moebius, F., Gill, D.L. & Montell, C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl. Acad. Sci. USA98, 10692–10697 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem.278, 30813–30820 (2003). ArticleCASPubMed Google Scholar
Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science306, 1374–1377 (2004). ArticleCASPubMed Google Scholar
Nilius, B. et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem.280, 6423–6433 (2005). ArticleCASPubMed Google Scholar
Goldsmith, M.A. & Weiss, A. Early signal transduction by the antigen receptor without commitment to T cell activation. Science240, 1029–1031 (1988). ArticleCASPubMed Google Scholar
Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol.28, 716–729 (1998). ArticleCASPubMed Google Scholar
Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity4, 421–430 (1996). ArticleCASPubMed Google Scholar
Wulfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science282, 2266–2269 (1998). ArticleCASPubMed Google Scholar
Jacobelli, J., Chmura, S.A., Buxton, D.B., Davis, M.M. & Krummel, M.F. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nat. Immunol.5, 531–538 (2004). ArticleCASPubMed Google Scholar
Heath, K.E. et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am. J. Hum. Genet.69, 1033–1045 (2001). ArticleCASPubMedPubMed Central Google Scholar
Conti, M.A., Even-Ram, S., Liu, C., Yamada, K.M. & Adelstein, R.S. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J. Biol. Chem.279, 41263–41266 (2004). ArticleCASPubMed Google Scholar
Matsushita, T. et al. Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem. Biophys. Res. Commun.325, 1163–1171 (2004). ArticleCASPubMed Google Scholar
Bhakta, N.R., Oh, D.Y. & Lewis, R.S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol.6, 143–151 (2005). ArticleCASPubMed Google Scholar
Esser, M.T., Krishnamurthy, B. & Braciale, V.L. Distinct T cell receptor signaling requirements for perforin- or FasL-mediated cytotoxicity. J. Exp. Med.183, 1697–1706 (1996). ArticleCASPubMed Google Scholar
Takayama, H. & Sitkovsky, M.V. Antigen receptor-regulated exocytosis in cytotoxic T lymphocytes. J. Exp. Med.166, 725–743 (1987). ArticleCASPubMed Google Scholar
Kupfer, A., Dennert, G. & Singer, S.J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J. Mol. Cell. Immunol.2, 37–49 (1985). CASPubMed Google Scholar
Lowin-Kropf, B., Shapiro, V.S. & Weiss, A. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol.140, 861–871 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kuhn, J.R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity16, 111–121 (2002). ArticleCASPubMed Google Scholar
Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity15, 751–761 (2001). ArticleCASPubMed Google Scholar
Kuhne, M.R. et al. Linker for activation of T cells, ζ-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J. Immunol.171, 860–866 (2003). ArticleCASPubMed Google Scholar
Lyubchenko, T.A., Wurth, G.A. & Zweifach, A. Role of calcium influx in cytotoxic T lymphocyte lytic granule exocytosis during target cell killing. Immunity15, 847–859 (2001). ArticleCASPubMed Google Scholar
Esser, M.T., Haverstick, D.M., Fuller, C.L., Gullo, C.A. & Braciale, V.L. Ca2+ signaling modulates cytolytic T lymphocyte effector functions. J. Exp. Med.187, 1057–1067 (1998). ArticleCASPubMedPubMed Central Google Scholar
Purbhoo, M.A., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol.5, 524–530 (2004). ArticleCASPubMed Google Scholar
Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science287, 1046–1049 (2000). ArticleCASPubMed Google Scholar
Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol.2, 515–522 (2001). ArticleCASPubMed Google Scholar
Neptune, E.R. & Bourne, H.R. Receptors induce chemotaxis by releasing the βγ subunit of Gi, not by activating Gq or Gs . Proc. Natl. Acad. Sci. USA94, 14489–14494 (1997). ArticleCASPubMedPubMed Central Google Scholar
Mandeville, J.T. & Maxfield, F.R. Effects of buffering intracellular free calcium on neutrophil migration through three-dimensional matrices. J. Cell. Physiol.171, 168–178 (1997). ArticleCASPubMed Google Scholar
Eddy, R.J., Pierini, L.M., Matsumura, F. & Maxfield, F.R. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci.113, 1287–1298 (2000). ArticleCASPubMed Google Scholar
Goldsmith, M.A., Desai, D.M., Schultz, T. & Weiss, A. Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants. J. Biol. Chem.264, 17190–17197 (1989). ArticleCASPubMed Google Scholar
Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C. & Healy, J.I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature386, 855–858 (1997). ArticleCASPubMed Google Scholar
Dolmetsch, R.E., Xu, K. & Lewis, R.S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature392, 933–936 (1998). ArticleCASPubMed Google Scholar
Lewis, R.S. Calcium oscillations in T-cells: mechanisms and consequences for gene expression. Biochem. Soc. Trans.31, 925–929 (2003). ArticleCASPubMed Google Scholar
McKinsey, T.A., Zhang, C.L. & Olson, E.N. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14–3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA97, 14400–14405 (2000). ArticleCASPubMedPubMed Central Google Scholar
Means, A.R. Regulatory cascades involving calmodulin-dependent protein kinases. Mol. Endocrinol.14, 4–13 (2000). ArticleCASPubMed Google Scholar
McKinsey, T.A., Zhang, C.L., Lu, J. & Olson, E.N. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature408, 106–111 (2000). ArticleCASPubMedPubMed Central Google Scholar
Pan, F., Means, A.R. & Liu, J.O. Calmodulin-dependent protein kinase IV regulates nuclear export of Cabin1 during T-cell activation. EMBO J.24, 2104–2113 (2005). ArticleCASPubMedPubMed Central Google Scholar
Youn, H.D. & Liu, J.O. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity13, 85–94 (2000). ArticleCASPubMed Google Scholar
Meyer, T., Hanson, P.I., Stryer, L. & Schulman, H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science256, 1199–1202 (1992). ArticleCASPubMed Google Scholar
Chow, F.A., Anderson, K.A., Noeldner, P.K. & Means, A.R. The autonomous activity of calcium/calmodulin-dependent protein kinase IV is required for its role in transcription. J. Biol. Chem.280, 20530–20538 (2005). ArticleCASPubMed Google Scholar
Westphal, R.S., Anderson, K.A., Means, A.R. & Wadzinski, B.E. A signaling complex of Ca2+-calmodulin-dependent protein kinase IV and protein phosphatase 2A. Science280, 1258–1261 (1998). ArticleCASPubMed Google Scholar
Anderson, K.A., Noeldner, P.K., Reece, K., Wadzinski, B.E. & Means, A.R. Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. J. Biol. Chem.279, 31708–31716 (2004). ArticleCASPubMed Google Scholar
Ishida, A., Kameshita, I. & Fujisawa, H. A novel protein phosphatase that dephosphorylates and regulates Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem.273, 1904–1910 (1998). ArticleCASPubMed Google Scholar
Kitani, T. et al. Molecular cloning of Ca2+/calmodulin-dependent protein kinase phosphatase. J. Biochem.125, 1022–1028 (1999). ArticleCASPubMed Google Scholar
Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell66, 807–815 (1991). ArticleCASPubMed Google Scholar
Emmel, E.A. et al. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science246, 1617–1620 (1989). ArticleCASPubMed Google Scholar
Flanagan, W.M., Corthesy, B., Bram, R.J. & Crabtree, G.R. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature352, 803–807 (1991). ArticleCASPubMed Google Scholar
Clipstone, N.A. & Crabtree, G.R. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature357, 695–697 (1992). ArticleCASPubMed Google Scholar
Timmerman, L.A., Clipstone, N.A., Ho, S.N., Northrop, J.P. & Crabtree, G.R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature383, 837–840 (1996). ArticleCASPubMed Google Scholar
Loh, C. et al. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J. Biol. Chem.271, 10884–10891 (1996). ArticleCASPubMed Google Scholar
Beals, C.R., Sheridan, C.M., Turck, C.W., Gardner, P. & Crabtree, G.R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science275, 1930–1934 (1997). ArticleCASPubMed Google Scholar
Sheridan, C.M., Heist, E.K., Beals, C.R., Crabtree, G.R. & Gardner, P. Protein kinase A negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J. Biol. Chem.277, 48664–48676 (2002). ArticleCASPubMed Google Scholar
Miskin, J.E., Abrams, C.C., Goatley, L.C. & Dixon, L.K. A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science281, 562–565 (1998). ArticleCASPubMed Google Scholar
Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science301, 1099–1102 (2003). ArticleCASPubMed Google Scholar
Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell109, S67–S79 (2002). ArticleCASPubMed Google Scholar
Stankunas, K., Graef, I.A., Neilson, J.R., Park, S.H. & Crabtree, G.R. Signaling through calcium, calcineurin, and NF-AT in lymphocyte activation and development. Cold Spring Harb. Symp. Quant. Biol.64, 505–516 (1999). ArticleCASPubMed Google Scholar
Rao, A., Luo, C. & Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol.15, 707–747 (1997). ArticleCASPubMed Google Scholar
Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol.5, 472–484 (2005). ArticleCASPubMed Google Scholar
Crabtree, G.R. Contingent genetic regulatory events in T lymphocyte activation. Science243, 355–361 (1989). ArticleCASPubMed Google Scholar
Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl. Acad. Sci. USA99, 11796–11801 (2002). ArticleCASPubMedPubMed Central Google Scholar
Parry, R.V. et al. Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B. Eur. J. Immunol.27, 2495–2501 (1997). ArticleCASPubMed Google Scholar
Harada, Y. et al. Novel role of phosphatidylinositol 3-kinase in CD28-mediated costimulation. J. Biol. Chem.276, 9003–9008 (2001). ArticleCASPubMed Google Scholar
Jones, R.G. et al. CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J. Exp. Med.196, 335–348 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kane, L.P., Andres, P.G., Howland, K.C., Abbas, A.K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat. Immunol.2, 37–44 (2001). ArticleCASPubMed Google Scholar
Brunner, M.C. et al. CTLA-4-Mediated inhibition of early events of T cell proliferation. J. Immunol.162, 5813–5820 (1999). CASPubMed Google Scholar
Chambers, C.A. et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol. Rev.153, 27–46 (1996). ArticleCASPubMed Google Scholar
Gitler, A.D. et al. Nf1 has an essential role in endothelial cells. Nat. Genet.33, 75–79 (2003). ArticleCASPubMed Google Scholar
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell109, 719–731 (2002). ArticleCASPubMed Google Scholar
Jenkins, M.K., Chen, C.A., Jung, G., Mueller, D.L. & Schwartz, R.H. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol.144, 16–22 (1990). CASPubMed Google Scholar
Jenkins, M.K., Pardoll, D.M., Mizuguchi, J., Chused, T.M. & Schwartz, R.H. Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones. Proc. Natl. Acad. Sci. USA84, 5409–5413 (1987). ArticleCASPubMedPubMed Central Google Scholar
Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol.5, 255–265 (2004). ArticleCASPubMed Google Scholar
Mammucari, C. et al. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev. Cell8, 665–676 (2005). ArticleCASPubMed Google Scholar
Rothermel, B. et al. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J. Biol. Chem.275, 8719–8725 (2000). ArticleCASPubMed Google Scholar
Lai, M.M., Burnett, P.E., Wolosker, H., Blackshaw, S. & Snyder, S.H. Cain, a novel physiologic protein inhibitor of calcineurin. J. Biol. Chem.273, 18325–18331 (1998). ArticleCASPubMed Google Scholar
Sun, L. et al. Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity8, 703–711 (1998). ArticleCASPubMed Google Scholar
Fuentes, J.J. et al. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet.9, 1681–1690 (2000). ArticleCASPubMed Google Scholar