The double life of a B-1 cell: self-reactivity selects for protective effector functions (original) (raw)
Bos, N. A. et al. Serum immunoglobulin levels and naturally occurring antibodies against carbohydrate antigens in germ-free BALB/c mice fed chemically defined ultrafiltered diet. Eur. J. Immunol.19, 2335–2339 (1989). ArticleCASPubMed Google Scholar
Haury, M. et al. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol.27, 1557–1563 (1997). ArticleCASPubMed Google Scholar
Hooijkaas, H., Benner, R., Pleasants, J. R. & Wostmann, B. S. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen-free” diet. Eur. J. Immunol.14, 1127–1130 (1984). ArticleCASPubMed Google Scholar
Andersson, J., Sjoberg, O. & Moller, G. Induction of immunoglobulin and antibody synthesis in vitro by lipopolysaccharides. Eur. J. Immunol.2, 349–353 (1972). ArticleCASPubMed Google Scholar
Coutinho, A., Gronowicz, E. & Moller, G. Mechanism of B-cell activation and paralysis by thymus-independent antigens. Additive effects between NNP–LPS and LPS in the specific response to the hapten. Scand. J. Immunol.4, 89–94 (1975). ArticleCASPubMed Google Scholar
Crampton, S. P., Voynova, E. & Bolland, S. Innate pathways to B-cell activation and tolerance. Ann. NY Acad. Sci.1183, 58–68 (2010). ArticleCASPubMed Google Scholar
Li, X., Martin, F., Oliver, A. M., Kearney, J. F. & Carter, R. H. Antigen receptor proximal signaling in splenic B-2 cell subsets. J. Immunol.166, 3122–3129 (2001). ArticleCASPubMed Google Scholar
Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a “natural immune memory”. Immunol. Rev.175, 70–79 (2000). ArticleCASPubMed Google Scholar
Baumgarth, N., Tung, J. W. & Herzenberg, L. A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol.26, 347–362 (2005). ArticleCASPubMed Google Scholar
Bouvet, J.-P. & Dighiero, G. From natural polyreactive autoantibodies to a la carte monoreactive antibodies to infectious agents: is it a small world after all? Infect. Immun.66, 1–4 (1998). CASPubMedPubMed Central Google Scholar
Stewart, J. Immunoglobulins did not arise in evolution to fight infection. Immunol. Today13, 396–399 (1992). ArticleCASPubMed Google Scholar
Binder, C. J. & Silverman, G. J. Natural antibodies and the autoimmunity of atherosclerosis. Springer Semin. Immunopathol.26, 385–404 (2005). ArticleCASPubMed Google Scholar
Hardy, R. R. B-1 B cells: development, selection, natural autoantibody and leukemia. Curr. Opin. Immunol.18, 547–555 (2006). ArticleCASPubMed Google Scholar
Hayakawa, K., Hardy, R. R., Parks, D. R. & Herzenberg, L. A. The “Ly-1 B” cell subpopulation in normal immunodefective, and autoimmune mice. J. Exp. Med.157, 202–218 (1983). This study makes a crucial connection between the increased IgM secretion that occurs in NZB/NZW mice owing to an aberrant population of CD5+ B cells and the natural IgM secretion by CD5+ B cells that occurs in normal mice. ArticleCASPubMed Google Scholar
Hayakawa, K., Hardy, R. R. & Herzenberg, L. A. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J. Exp. Med.161, 1554–1568 (1985). This study forms the basis for the 'lineage hypothesis' of B-1 cell development. ArticleCASPubMed Google Scholar
Kantor, A. B., Stall, A. M., Adams, S. & Herzenberg, L. A. Differential development of progenitor activity for three B-cell lineages. Proc. Natl Acad. Sci. USA89, 3320–3324 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kantor, A. B. The development and repertoire of B-1 cells (CD5 B cells). Immunol. Today12, 389–391 (1991). ArticleCASPubMed Google Scholar
Godin, I. E., Garcia-Porrero, J. A., Coutinho, A., Dieterlen-Lievre, F. & Marcos, M. A. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature364, 67–70 (1993). This study identified B cell precursors in the splanchnopleura region of mouse embryos that give rise only to B-1 cells after adoptive transfer. ArticleCASPubMed Google Scholar
Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity16, 219–230 (2002). ArticleCASPubMed Google Scholar
Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity28, 639–650 (2008). ArticleCASPubMed Google Scholar
Yang, M. et al. Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J. Immunol.184, 3321–3325 (2010). ArticleCASPubMed Google Scholar
Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity14, 617–629 (2001). ArticleCASPubMed Google Scholar
Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol.20, 253–300 (2002). ArticleCASPubMed Google Scholar
Dorshkind, K. & Montecino-Rodriguez, E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Rev. Immunol.7, 213–219 (2007). ArticleCAS Google Scholar
Lalor, P. A., Herzenberg, L. A., Adams, S. & Stall, A. M. Feedback regulation of murine Ly-1 B cell development. Eur. J. Immunol.19, 507–513 (1989). This study showed that bone marrow cells do not continuously repopulate the peritoneal cavity B-1 cell pool in the steady state. ArticleCASPubMed Google Scholar
Deenen, G. J. & Kroese, F. G. Murine peritoneal Ly-1 B cells do not turn over rapidly. Ann. NY Acad. Sci.651, 70–71 (1992). ArticleCASPubMed Google Scholar
Baumgarth, N., Herman, O. C., Jager, G. C., Brown, L. & Herzenberg, L. A. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc. Natl Acad. Sci. USA96, 2250–2255 (1999). ArticleCASPubMedPubMed Central Google Scholar
Boes, M. et al. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol.160, 4776–4787 (1998). CASPubMed Google Scholar
Duber, S. et al. Induction of B-cell development in adult mice reveals the ability of bone marrow to produce B-1a cells. Blood114, 4960–4967 (2009). ArticleCASPubMed Google Scholar
Holodick, N. E., Repetny, K., Zhong, X. & Rothstein, T. L. Adult BM generates CD5+ B1 cells containing abundant N-region additions. Eur. J. Immunol.39, 2383–2394 (2009). ArticleCASPubMedPubMed Central Google Scholar
Montecino-Rodriguez, E., Leathers, H. & Dorshkind, K. Identification of a B-1 B cell-specified progenitor. Nature Immunol.7, 293–301 (2006). This study identified the elusive precursor of B-1 cells in the bone marrow of adult mice. ArticleCAS Google Scholar
Tornberg, U. C. & Holmberg, D. B-1a, B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressures. EMBO J.14, 1680–1689 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kantor, A. B., Merrill, C. E., Herzenberg, L. A. & Hillson, J. L. An unbiased analysis of VH–D–JH sequences from B-1a, B-1b, and conventional B cells. J. Immunol.158, 1175–1186 (1997). CASPubMed Google Scholar
Gregoire, K. E., Goldschneider, I., Barton, R. W. & Bollum, F. J. Ontogeny of terminal deoxynucleotidyl transferase-positive cells in lymphohemopoietic tissues of rat and mouse. J. Immunol.123, 1347–1352 (1979). CASPubMed Google Scholar
Gu, H., Forster, I. & Rajewsky, K. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J.9, 2133–2140 (1990). ArticleCASPubMedPubMed Central Google Scholar
Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest.119, 1335–1349 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kulik, L. et al. Pathogenic natural antibodies recognizing annexin IV are required to develop intestinal ischemia-reperfusion injury. J. Immunol.182, 5363–5373 (2009). ArticleCASPubMed Google Scholar
Hogquist, K. A., Starr, T. K. & Jameson, S. C. Receptor sensitivity: when T cells lose their sense of self. Curr. Biol.13, R239–R241 (2003). ArticleCASPubMed Google Scholar
Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science285, 113–116 (1999). This study provided evidence that B-1 cell development is driven by positive selection on self antigens. ArticleCASPubMed Google Scholar
Lam, K. P. & Rajewsky, K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development. J. Exp. Med.190, 471–477 (1999). ArticleCASPubMedPubMed Central Google Scholar
Casola, S. et al. B cell receptor signal strength determines B cell fate. Nature Immunol.5, 317–327 (2004). ArticleCAS Google Scholar
Esplin, B. L., Welner, R. S., Zhang, Q., Borghesi, L. A. & Kincade, P. W. A differentiation pathway for B1 cells in adult bone marrow. Proc. Natl Acad. Sci. USA106, 5773–5778 (2009). ArticleCASPubMedPubMed Central Google Scholar
Solvason, N. et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol.12, 631–638 (2000). ArticleCASPubMed Google Scholar
Vink, A., Warnier, G., Brombacher, F. & Renauld, J. C. Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J. Exp. Med.189, 1413–1423 (1999). ArticleCASPubMedPubMed Central Google Scholar
Moon, B. G., Takaki, S., Miyake, K. & Takatsu, K. The role of IL-5 for mature B-1 cells in homeostatic proliferation, cell survival, and Ig production. J. Immunol.172, 6020–6029 (2004). ArticleCASPubMed Google Scholar
Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature463, 540–544 (2010). ArticleCASPubMed Google Scholar
Ansel, K. M., Harris, R. B. & Cyster, J. G. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity16, 67–76 (2002). ArticleCASPubMed Google Scholar
Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med.195, 771–780 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rothaeusler, K. & Baumgarth, N. Evaluation of intranuclear BrdU detection procedures for use in multicolor flow cytometry. Cytometry A69, 249–259 (2006). ArticlePubMedPubMed Central Google Scholar
Kretschmer, K., Stopkowicz, J., Scheffer, S., Greten, T. F. & Weiss, S. Maintenance of peritoneal B-1a lymphocytes in the absence of the spleen. J. Immunol.173, 197–204 (2004). ArticleCASPubMed Google Scholar
McIntyre, T. M., Holmes, K. L., Steinberg, A. D. & Kastner, D. L. CD5+ peritoneal B cells express high levels of membrane, but not secretory, C mu mRNA. J. Immunol.146, 3639–3645 (1991). CASPubMed Google Scholar
Tumang, J. R., Frances, R., Yeo, S. G. & Rothstein, T. L. Spontaneously Ig-secreting B-1 cells violate the accepted paradigm for expression of differentiation-associated transcription factors. J. Immunol.174, 3173–3177 (2005). ArticleCASPubMed Google Scholar
Fairfax, K. A. et al. Different kinetics of Blimp-1 induction in B cell subsets revealed by reporter gene. J. Immunol.178, 4104–4111 (2007). ArticleCASPubMed Google Scholar
Baumgarth, N. et al. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med.192, 271–280 (2000). ArticleCASPubMedPubMed Central Google Scholar
Boes, M., Prodeus, A. P., Schmidt, T., Carroll, M. C. & Chen, J. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med.188, 2381–2386 (1998). ArticleCASPubMedPubMed Central Google Scholar
Haas, K. M., Poe, J. C., Steeber, D. A. & Tedder, T. F. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity23, 7–18 (2005). ArticleCASPubMed Google Scholar
Jayasekera, J. P., Moseman, E. A. & Carroll, M. C. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol.81, 3487–3494 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science286, 2156–2159 (1999). ArticleCASPubMed Google Scholar
Zhou, Z. H. et al. The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe1, 51–61 (2007). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, K., Maruya, M., Kawamoto, S. & Fagarasan, S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol. Rev.237, 180–190 (2010). ArticleCASPubMed Google Scholar
Kaminski, D. A. & Stavnezer, J. Enhanced IgA class switching in marginal zone and B1 B cells relative to follicular/B2 B cells. J. Immunol.177, 6025–6029 (2006). ArticleCASPubMed Google Scholar
Tarlinton, D. M., McLean, M. & Nossal, G. J. B1 and B2 cells differ in their potential to switch immunoglobulin isotype. Eur. J. Immunol.25, 3388–3393 (1995). ArticleCASPubMed Google Scholar
Thurnheer, M. C., Zuercher, A. W., Cebra, J. J. & Bos, N. A. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J. Immunol.170, 4564–4571 (2003). ArticleCASPubMed Google Scholar
Kroese, F. G. et al. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int. Immunol.1, 75–84 (1989). This seminal study links IgA production in the gut to B-1 cells and therefore links B-1 cells to the regulation of gut homeostasis and mucosal immunity. ArticleCASPubMed Google Scholar
Kroese, F. G., de Waard, R. & Bos, N. A. B-1 cells and their reactivity with the murine intestinal microflora. Semin. Immunol.8, 11–18 (1996). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Slack, E. The functional interactions of commensal bacteria with intestinal secretory IgA. Curr. Opin. Gastroenterol.23, 673–678 (2007). ArticleCASPubMed Google Scholar
De-Gennaro, L. A., Popi, A. F., Almeida, S. R., Lopes, J. D. & Mariano, M. B-1 cells modulate oral tolerance in mice. Immunol. Lett.124, 63–69 (2009). ArticleCASPubMed Google Scholar
Boes, M. et al. Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl Acad. Sci. USA97, 1184–1189 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest.105, 1731–1740 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y., Park, Y. B., Patel, E. & Silverman, G. J. IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol.182, 6031–6043 (2009). ArticleCASPubMed Google Scholar
Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol.23, 901–944 (2005). ArticleCASPubMed Google Scholar
Rodriguez-Manzanet, R. et al. T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc. Natl Acad. Sci. USA107, 8706–8711 (2010). These authors identified TIM4 as a scavenger receptor expressed by macrophages and B-1 cells and described an antibody-independent mechanism by which B-1 cells can function as regulators of tissue homeostasis. ArticleCASPubMedPubMed Central Google Scholar
O'Garra, A. et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin-10. Eur. J. Immunol.22, 711–717 (1992). ArticleCASPubMed Google Scholar
Lampropoulou, V. et al. Suppressive functions of activated B cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity. Immunol. Rev.233, 146–161 (2010). ArticleCASPubMed Google Scholar
Murakami, M. et al. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse. J. Exp. Med.180, 111–121 (1994). ArticleCASPubMed Google Scholar
Nisitani, S., Tsubata, T., Murakami, M. & Honjo, T. Administration of interleukin-5 or -10 activates peritoneal B-1 cells and induces autoimmune hemolytic anemia in anti-erythrocyte autoantibody-transgenic mice. Eur. J. Immunol.25, 3047–3052 (1995). ArticleCASPubMed Google Scholar
Yang, Y., Tung, J. W., Ghosn, E. E. & Herzenberg, L. A. Division and differentiation of natural antibody-producing cells in mouse spleen. Proc. Natl Acad. Sci. USA104, 4542–4546 (2007). ArticleCASPubMedPubMed Central Google Scholar
Genestier, L. et al. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J. Immunol.178, 7779–7786 (2007). ArticleCASPubMed Google Scholar
Chumley, M. J., Dal Porto, J. M. & Cambier, J. C. The unique antigen receptor signaling phenotype of B-1 cells is influenced by locale but induced by antigen. J. Immunol.169, 1735–1743 (2002). ArticleCASPubMed Google Scholar
Morris, D. L. & Rothstein, T. L. Abnormal transcription factor induction through the surface immunoglobulin M receptor of B-1 lymphocytes. J. Exp. Med.177, 857–861 (1993). This study demonstrates the unique differentiation stage of peritoneal B-1 cells, showing that these cells are unable to enter the cell cycle after BCR crosslinking but that BCR stimulation does not affect the survival of B-1 cells. ArticleCASPubMed Google Scholar
Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science274, 1906–1909 (1996). ArticleCASPubMed Google Scholar
Ochi, H. & Watanabe, T. Negative regulation of B cell receptor-mediated signaling in B-1 cells through CD5 and Ly49 co-receptors via Lyn kinase activity. Int. Immunol.12, 1417–1423 (2000). ArticleCASPubMed Google Scholar
Holodick, N. E., Tumang, J. R. & Rothstein, T. L. Continual signaling is responsible for constitutive ERK phosphorylation in B-1a cells. Mol. Immunol.46, 3029–3036 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sen, G. et al. Defective CD19-dependent signaling in B-1a and B-1b B lymphocyte subpopulations. Mol. Immunol.39, 57–68 (2002). ArticleCASPubMed Google Scholar
Dal Porto, J. M., Burke, K. & Cambier, J. C. Regulation of BCR signal transduction in B-1 cells requires the expression of the Src family kinase Lck. Immunity21, 443–453 (2004). ArticlePubMed Google Scholar
Ulivieri, C., Valensin, S., Majolini, M. B., Matthews, R. J. & Baldari, C. T. Normal B-1 cell development but defective BCR signaling in Lck−/− mice. Eur. J. Immunol.33, 441–445 (2003). ArticleCASPubMed Google Scholar
Frances, R., Tumang, J. R. & Rothstein, T. L. B-1 cells are deficient in Lck: defective B cell receptor signal transduction in B-1 cells occurs in the absence of elevated Lck expression. J. Immunol.175, 27–31 (2005). ArticleCASPubMed Google Scholar
Hoffmann, A. et al. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nature Immunol.8, 695–704 (2007). ArticleCAS Google Scholar
Wong, S. C. et al. Peritoneal CD5+ B-1 cells have signaling properties similar to tolerant B cells. J. Biol. Chem.277, 30707–30715 (2002). ArticleCASPubMed Google Scholar
Bell, S. E. & Goodnow, C. C. A selective defect in IgM antigen receptor synthesis and transport causes loss of cell surface IgM expression on tolerant B lymphocytes. EMBO J.13, 816–826 (1994). ArticleCASPubMedPubMed Central Google Scholar
Blery, M., Tze, L., Miosge, L. A., Jun, J. E. & Goodnow, C. C. Essential role of membrane cholesterol in accelerated BCR internalization and uncoupling from NF-κB in B cell clonal anergy. J. Exp. Med.203, 1773–1783 (2006). ArticleCASPubMedPubMed Central Google Scholar
Fulcher, D. A. & Basten, A. Reduced life span of anergic self-reactive B cells in a double-transgenic model. J. Exp. Med.179, 125–134 (1994). ArticleCASPubMed Google Scholar
Durand, C. A. et al. Phosphoinositide 3-kinase p110δ regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. J. Immunol.183, 5673–5684 (2009). ArticleCASPubMed Google Scholar
Cole, L. E. et al. Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc. Natl Acad. Sci. USA106, 4343–4348 (2009). ArticleCASPubMedPubMed Central Google Scholar
Alugupalli, K. R. et al. B1b lymphocytes confer T cell-independent long-lasting immunity. Immunity21, 379–390 (2004). This study provides evidence for the existence of B-1b cell-derived memory responses. ArticleCASPubMed Google Scholar
Ohdan, H. et al. Mac-1-negative B-1b phenotype of natural antibody-producing cells, including those responding to Galα1,3Gal epitopes in α1,3-galactosyltransferase-deficient mice. J. Immunol.165, 5518–5529 (2000). ArticleCASPubMed Google Scholar
Askenase, P. W., Szczepanik, M., Itakura, A., Kiener, C. & Campos, R. A. Extravascular T-cell recruitment requires initiation begun by Vα14+ NKT cells and B-1 B cells. Trends Immunol.25, 441–449 (2004). This review summarizes several studies that showed that the early production of IgM by B-1 cells and interaction of B-1 cells with NKT cells are required for the initiation of DTH responses. ArticleCASPubMed Google Scholar
Kerfoot, S. M., Szczepanik, M., Tung, J. W. & Askenase, P. W. Identification of initiator B cells, a novel subset of activation-induced deaminase-dependent B-1-like cells that mediate initiation of contact sensitivity. J. Immunol.181, 1717–1727 (2008). ArticleCASPubMed Google Scholar
Takahashi, T. & Strober, S. Natural killer T cells and innate immune B cells from lupus-prone NZB/W mice interact to generate IgM and IgG autoantibodies. Eur. J. Immunol.38, 156–165 (2008). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, N. et al. Migration and differentiation of autoreactive B-1 cells induced by activated γδ T cells in antierythrocyte immunoglobulin transgenic mice. J. Exp. Med.192, 1577–1586 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gil-Cruz, C. et al. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc. Natl Acad. Sci. USA106, 9803–9808 (2009). ArticleCASPubMedPubMed Central Google Scholar
Alam, C., Valkonen, S., Ohls, S., Tornqvist, K. & Hanninen, A. Enhanced trafficking to the pancreatic lymph nodes and auto-antigen presentation capacity distinguishes peritoneal B lymphocytes in non-obese diabetic mice. Diabetologia53, 346–355 (2010). ArticleCASPubMed Google Scholar
Riggs, J. E. et al. Mls presentation by peritoneal cavity B cells. Immunobiology209, 255–264 (2004). ArticleCASPubMed Google Scholar
Ryan, G. A. et al. B1 cells promote pancreas infiltration by autoreactive T cells. J. Immunol.185, 2800–2807 (2010). ArticleCASPubMed Google Scholar
Sun, C. M., Deriaud, E., Leclerc, C. & Lo-Man, R. Upon TLR9 signaling, CD5+ B cells control the IL-12-dependent Th1-priming capacity of neonatal DCs. Immunity22, 467–477 (2005). CASPubMed Google Scholar
Casali, P., Burastero, S. E., Nakamura, M., Inghirami, G. & Notkins, A. L. Human lymphocytes making rheumatoid factor and antibody to ssDNA belong to Leu-1+ B-cell subset. Science236, 77–81 (1987). ArticleCASPubMed Google Scholar
Hardy, R. R., Hayakawa, K., Shimizu, M., Yamasaki, K. & Kishimoto, T. Rheumatoid factor secretion from human Leu-1+ B cells. Science236, 81–83 (1987). References 117 and 118 described the presence of CD5+ B cells that generate self-reactive antibodies in humans. ArticleCASPubMed Google Scholar
Kasaian, M. T. & Casali, P. Autoimmunity-prone B-1 (CD5 B) cells, natural antibodies and self recognition. Autoimmunity15, 315–329 (1993). ArticleCASPubMed Google Scholar
Kasaian, M. T., Ikematsu, H. & Casali, P. Identification and analysis of a novel human surface CD5− B lymphocyte subset producing natural antibodies. J. Immunol.148, 2690–2702 (1992). CASPubMed Google Scholar
Boursier, L., Montalto, S. A., Raju, S., Culora, G. & Spencer, J. Characterization of cells of the B lineage in the human adult greater omentum. Immunology119, 90–97 (2006). ArticleCASPubMedPubMed Central Google Scholar
Blair, P. A. et al. CD19+CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity32, 129–140 (2010). ArticleCASPubMed Google Scholar
Carsetti, R., Rosado, M. M. & Wardmann, H. Peripheral development of B cells in mouse and man. Immunol. Rev.197, 179–191 (2004). ArticlePubMed Google Scholar
Dorner, T., Foster, S. J., Farner, N. L. & Lipsky, P. E. Somatic hypermutation of human immunoglobulin heavy chain genes: targeting of RGYW motifs on both DNA strands. Eur. J. Immunol.28, 3384–3396 (1998). ArticleCASPubMed Google Scholar
Lee, J., Kuchen, S., Fischer, R., Chang, S. & Lipsky, P. E. Identification and characterization of a human CD5+ pre-naive B cell population. J. Immunol.182, 4116–4126 (2009). ArticleCASPubMed Google Scholar
Pillai, S., Cariappa, A. & Moran, S. T. Marginal zone B cells. Annu. Rev. Immunol.23, 161–196 (2005). ArticleCASPubMed Google Scholar
Weller, S. et al. Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood104, 3647–3654 (2004). ArticleCASPubMed Google Scholar
Carsetti, R., Pantosti, A. & Quinti, I. Impairment of the antipolysaccharide response in splenectomized patients is due to the lack of immunoglobulin M memory B cells. J. Infect. Dis.193, 1189–1190 (2006). ArticlePubMed Google Scholar
Weller, S. et al. Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+IgD+CD27+ B cell repertoire in infants. J. Exp. Med.205, 1331–1342 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science301, 1374–1377 (2003). ArticleCASPubMed Google Scholar
Rakhmanov, M. et al. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc. Natl Acad. Sci. USA106, 13451–13456 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ehrhardt, G. R. et al. Expression of the immunoregulatory molecule FcRH4 defines a distinctive tissue-based population of memory B cells. J. Exp. Med.202, 783–791 (2005). ArticleCASPubMedPubMed Central Google Scholar
Moir, S. et al. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med.205, 1797–1805 (2008). ArticleCASPubMedPubMed Central Google Scholar
Baumgarth, N. & Roederer, M. A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods243, 77–97 (2000). ArticleCASPubMed Google Scholar
Ghosn, E. E., Yang, Y., Tung, J. & Herzenberg, L. A. CD11b expression distinguishes sequential stages of peritoneal B-1 development. Proc. Natl Acad. Sci. USA105, 5195–5200 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hastings, W. D., Gurdak, S. M., Tumang, J. R. & Rothstein, T. L. CD5+/Mac-1− peritoneal B cells: a novel B cell subset that exhibits characteristics of B-1 cells. Immunol. Lett.105, 90–96 (2006). ArticleCASPubMed Google Scholar
Wells, S. M., Kantor, A. B. & Stall, A. M. CD43 (S7) expression identifies peripheral B cell subsets. J. Immunol.153, 5503–5515 (1994). CASPubMed Google Scholar
Cong, Y. Z., Rabin, E. & Wortis, H. H. Treatment of murine CD5− B cells with anti-Ig, but not LPS, induces surface CD5: two B-cell activation pathways. Int. Immunol.3, 467–476 (1991). This study showed that CD5 expression can be upregulated on B-2 cells in response to BCR-mediated signalling and forms the basis of the 'induced differentiation hypothesis' of B-1 cell development. ArticleCASPubMed Google Scholar
Emslie, D. et al. Oct2 enhances antibody-secreting cell differentiation through regulation of IL-5 receptor α chain expression on activated B cells. J. Exp. Med.205, 409–421 (2008). ArticleCASPubMedPubMed Central Google Scholar
Won, W. J. & Kearney, J. F. CD9 is a unique marker for marginal zone B cells, B1 cells, and plasma cells in mice. J. Immunol.168, 5605–5611 (2002). ArticleCASPubMed Google Scholar
Martin, F. & Kearney, J. F. Marginal-zone B cells. Nature Rev. Immunol.2, 323–335 (2002). ArticleCAS Google Scholar
Kantor, A. B. & Herzenberg, L. A. Origin of murine B cell lineages. Annu. Rev. Immunol.11, 501–538 (1993). ArticleCASPubMed Google Scholar
Bouaziz, J. D., Yanaba, K. & Tedder, T. F. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev.224, 201–214 (2008). ArticleCASPubMed Google Scholar
Yanaba, K., Bouaziz, J. D., Matsushita, T., Tsubata, T. & Tedder, T. F. The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol.182, 7459–7472 (2009). ArticleCASPubMed Google Scholar
Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med.194, 1151–1164 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kawahara, T., Ohdan, H., Zhao, G., Yang, Y. G. & Sykes, M. Peritoneal cavity B cells are precursors of splenic IgM natural antibody-producing cells. J. Immunol.171, 5406–5414 (2003). ArticleCASPubMed Google Scholar
Rosado, M. M. et al. From the fetal liver to spleen and gut: the highway to natural antibody. Mucosal Immunol.2, 351–361 (2009). ArticleCASPubMed Google Scholar
Kurosaki, T., Aiba, Y., Kometani, K., Moriyama, S. & Takahashi, Y. Unique properties of memory B cells of different isotypes. Immunol. Rev.237, 104–116 (2010). ArticleCASPubMed Google Scholar