Goodnow, C. C. Balancing immunity, autoimmunity and self-tolerance. Ann. NY Acad. Sci.815, 55–66 (1997). CASPubMed Google Scholar
Rolink, A. & Melchers, F. B-cell development in the mouse. Immunol. Lett.54, 157–161 (1996). CASPubMed Google Scholar
Osmond, D. G., Rolink, A. & Melchers, F. Murine B lymphopoiesis: towards a unified model. Immunol. Today19, 65–68 (1998). CASPubMed Google Scholar
Kantor, A. B., Stall, A. M., Adams, S. & Herzenberg, L. A. Adoptive transfer of murine B-cell lineages. Ann. NY Acad. Sci.651, 168–169 (1992). CASPubMed Google Scholar
Stall, A. M., Wells, S. M. & Lam, K. P. B-1 cells: unique origins and functions. Semin. Immunol.8, 45–59 (1996). CASPubMed Google Scholar
Gray, D., MacLennan, I. C., Bazin, H. & Khan, M. Migrant μ+δ+ and static μ+δ− B-lymphocyte subsets. Eur. J. Immunol.12, 564–569 (1982). CASPubMed Google Scholar
Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. & Kearney, J. F. Marginal-zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol.27, 2366–2374 (1997). CASPubMed Google Scholar
Bendelac, A., Bonneville, M. & Kearney, J. F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol.1, 177–186 (2001). CAS Google Scholar
Martin, F. & Kearney, J. F. CD21highIgMhigh splenic B cells enriched in the marginal zone: distinct phenotypes and functions. Curr. Top. Microbiol. Immunol.246, 45–50 (1999). CASPubMed Google Scholar
Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal-zone and B1 B cells as part of a 'natural immune memory'. Immunol. Rev.175, 70–79 (2000). CASPubMed Google Scholar
Fagarasan, S., Watanabe, N. & Honjo, T. Generation, expansion, migration and activation of mouse B1 cells. Immunol. Rev.176, 205–215 (2000). CASPubMed Google Scholar
MacLennan, I. C., Bazin, H., Chassoux, D., Gray, D. & Lortan, J. Comparative analysis of the development of B cells in marginal zones and follicles. Adv. Exp. Med. Biol.186, 139–144 (1985). CASPubMed Google Scholar
Mond, J. J., Vos, Q., Lees, A. & Snapper, C. M. T-cell-independent antigens. Curr. Opin. Immunol.7, 349–354 (1995). CASPubMed Google Scholar
Ridge, J. P., Fuchs, E. J. & Matzinger, P. Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science271, 1723–1726 (1996). CASPubMed Google Scholar
Hardy, R. R. & Hayakawa, K. A developmental switch in B lymphopoiesis. Proc. Natl Acad. Sci. USA88, 11550–11554 (1991). CASPubMedPubMed Central Google Scholar
Hamilton, A. M., Lehuen, A. & Kearney, J. F. Immunofluorescence analysis of B-1 cell ontogeny in the mouse. Int. Immunol.6, 355–361 (1994). CASPubMed Google Scholar
Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature334, 676–682 (1988). CASPubMed Google Scholar
Martin, F., Chen, X. & Kearney, J. F. Development of VH81X transgene-bearing B cells in fetus and adult: sites for expansion and deletion in conventional and CD5/B1 cells. Int. Immunol.9, 493–505 (1997). CASPubMed Google Scholar
Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal-zone B cells depends on the rate of clonal production, CD19 and btk. Immunity12, 39–49 (2000).This study shows positive selection of specific clones into the MZ B-cell compartment. CASPubMed Google Scholar
Erikson, J. et al. Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature349, 331–334 (1991). CASPubMed Google Scholar
Wellmann, U., Werner, A. & Winkler, T. H. Altered selection processes of B lymphocytes in autoimmune NZB/W mice, despite intact central tolerance against DNA. Eur. J. Immunol.31, 2800–2810 (2001). CASPubMed Google Scholar
Kenny, J. J. et al. Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors. J. Immunol.164, 4111–4119 (2000). CASPubMed Google Scholar
Weaver, D. et al. Altered repertoire of endogenous immunoglobulin gene expression in transgenic mice containing a rearranged μ heavy-chain gene. Cell45, 247–259 (1986). CASPubMed Google Scholar
Cascalho, M., Wong, J. & Wabl, M. VH gene replacement in hyperselected B cells of the quasimonoclonal mouse. J. Immunol.159, 5795–5801 (1997). CASPubMed Google Scholar
Qin, X. F. et al. Secondary V(D)J recombination in B-1 cells. Nature397, 355–359 (1999). CASPubMed Google Scholar
Carvalho, T. L., Mota-Santos, T., Cumano, A., Demengeot, J. & Vieira, P. Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin-7−/− mice. J. Exp. Med.194, 1141–1150 (2001). CASPubMedPubMed Central Google Scholar
Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B-cell influx from the bone marrow. J. Exp. Med.194, 1151–1164 (2001). CASPubMedPubMed Central Google Scholar
Martin, F., Won, W. J. & Kearney, J. F. Generation of the germline peripheral B-cell repertoire: VH81X-λ B cells are unable to complete all developmental programs. J. Immunol.160, 3748–3758 (1998). CASPubMed Google Scholar
Cariappa, A. et al. The follicular versus marginal-zone B-lymphocyte cell-fate decision is regulated by Aiolos, Btk and CD21. Immunity14, 603–615 (2001). CASPubMed Google Scholar
Cooper, M. D., Cain, W. A., Van Alten, P. J. & Good, R. A. Development and function of the immunoglobulin producing system. I. Effect of bursectomy at different stages of development on germinal centers, plasma cells, immunoglobulins and antibody production. Int. Arch. Allergy Appl. Immunol.35, 242–252 (1969). CASPubMed Google Scholar
Kincade, P. W., Self, K. S. & Cooper, M. D. Survival and function of bursa-derived cells in bursectomized chickens. Cell. Immunol.8, 93–102 (1973). CASPubMed Google Scholar
Sprent, J., Schaefer, M., Hurd, M., Surh, C. D. & Ron, Y. Mature murine B and T cells transferred to SCID mice can survive indefinitely and many maintain a virgin phenotype. J. Exp. Med.174, 717–728 (1991). CASPubMed Google Scholar
Agenes, F. & Freitas, A. A. Transfer of small resting B cells into immunodeficient hosts results in the selection of a self-renewing activated B-cell population. J. Exp. Med.189, 319–330 (1999). CASPubMedPubMed Central Google Scholar
Oliver, A. M., Martin, F. & Kearney, J. F. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol.162, 7198–7207 (1999). CASPubMed Google Scholar
Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science285, 113–116 (1999).The first demonstration of a defined self antigen (Thy1-associated epitope) that has a role in positive selection and/or maintenance of the B1 repertoire. CASPubMed Google Scholar
Radic, M. Z., Erikson, J., Litwin, S. & Weigert, M. B lymphocytes may escape tolerance by revising their antigen receptors. J. Exp. Med.177, 1165–1173 (1993). CASPubMed Google Scholar
Li, H., Jiang, Y., Prak, E. L., Radic, M. & Weigert, M. Editors and editing of anti-DNA receptors. Immunity15, 947–957 (2001). CASPubMed Google Scholar
Chen, X., Martin, F., Forbush, K. A., Perlmutter, R. M. & Kearney, J. F. Evidence for selection of a population of multi-reactive B cells into the splenic marginal zone. Int. Immunol.9, 27–41 (1997). PubMed Google Scholar
Li, Y., Li, H. & Weigert, M. Autoreactive B cells in the marginal zone that express dual receptors. J. Exp. Med.195, 181–188 (2002). CASPubMedPubMed Central Google Scholar
Okamoto, M. et al. A transgenic model of autoimmune hemolytic anemia. J. Exp. Med.175, 71–79 (1992). CASPubMed Google Scholar
Torres, R. M., Flaswinkel, H., Reth, M. & Rajewsky, K. Aberrant B-cell development and immune response in mice with a compromised BCR complex. Science272, 1804–1808 (1996). CASPubMed Google Scholar
Kraus, M. et al. Interference with immunoglobulin (Ig)α immunoreceptor tyrosine-based activation motif (ITAM) phosphorylation modulates or blocks B-cell development, depending on the availability of an Igβ cytoplasmic tail. J. Exp. Med.194, 455–469 (2001). CASPubMedPubMed Central Google Scholar
Makowska, A., Faizunnessa, N. N., Anderson, P., Midtvedt, T. & Cardell, S. CD1high B cells: a population of mixed origin. Eur. J. Immunol.29, 3285–3294 (1999). CASPubMed Google Scholar
Otipoby, K. L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature384, 634–637 (1996). CASPubMed Google Scholar
Sato, S. et al. CD22 is both a positive and negative regulator of B-lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity5, 551–562 (1996). CASPubMed Google Scholar
O'Keefe, T. L., Williams, G. T., Batista, F. D. & Neuberger, M. S. Deficiency in CD22, a B-cell-specific inhibitory receptor, is sufficient to predispose to development of high-affinity autoantibodies. J. Exp. Med.189, 1307–1313 (1999). CASPubMedPubMed Central Google Scholar
Cornall, R. J. et al. Polygenic autoimmune traits: Lyn, CD22 and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity8, 497–508 (1998). CASPubMed Google Scholar
Cyster, J. G. et al. Regulation of B-lymphocyte negative and positive selection by tyrosine phosphatase CD45. Nature381, 325–328 (1996). CASPubMed Google Scholar
Pan, C., Baumgarth, N. & Parnes, J. R. CD72-deficient mice reveal nonredundant roles of CD72 in B-cell development and activation. Immunity11, 495–506 (1999). CASPubMed Google Scholar
Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen-receptor-induced growth signals in B-1 B cells. Science274, 1906–1909 (1996). CASPubMed Google Scholar
Cyster, J. G. & Goodnow, C. C. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity2, 13–24 (1995). CASPubMed Google Scholar
Schmidt, K. N., Hsu, C. W., Griffin, C. T., Goodnow, C. C. & Cyster, J. G. Spontaneous follicular exclusion of SHP1-deficient B cells is conditional on the presence of competitor wild-type B cells. J. Exp. Med.187, 929–937 (1998). CASPubMedPubMed Central Google Scholar
Tarakhovsky, A. et al. Defective antigen-receptor-mediated proliferation of B and T cells in the absence of Vav. Nature374, 467–470 (1995). CASPubMed Google Scholar
Fruman, D. A. et al. Impaired B-cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science283, 393–397 (1999). CASPubMed Google Scholar
Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science283, 390–392 (1999). CASPubMed Google Scholar
Leitges, M. et al. Immunodeficiency in protein-kinase-Cβ-deficient mice. Science273, 788–791 (1996). CASPubMed Google Scholar
Wang, J. H. et al. Aiolos regulates B-cell activation and maturation to effector state. Immunity9, 543–553 (1998). CASPubMed Google Scholar
Hatzivassiliou, G. et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B-cell malignancy. Immunity14, 277–289 (2001). CASPubMed Google Scholar
Davis, R. S., Wang, Y. H., Kubagawa, H. & Cooper, M. D. Identification of a family of Fc receptor homologs with preferential B-cell expression. Proc. Natl Acad. Sci.98, 9772–9777 (2001). CASPubMedPubMed Central Google Scholar
Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science271, 1289–1291 (1996). CASPubMed Google Scholar
Matsumoto, M. et al. Distinct roles of lymphotoxin-α and the type I tumor-necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone-marrow-derived cells. J. Exp. Med.186, 1997–2004 (1997). CASPubMedPubMed Central Google Scholar
Korner, H. et al. Recirculating and marginal-zone B-cell populations can be established and maintained independently of primary and secondary follicles. Immunol. Cell Biol.79, 54–61 (2001). CASPubMed Google Scholar
Ngo, V. N. et al. Lymphotoxin α/β and tumor-necrosis factor are required for stromal-cell expression of homing chemokines in B- and T-cell areas of the spleen. J. Exp. Med.189, 403–412 (1999). CASPubMedPubMed Central Google Scholar
Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature406, 309–314 (2000).Using BLC-deficient mice, this study shows the positive effect of BLC on the lymphotoxin pathway that eventually amplifies B-cell migration; it separates B-cell follicles into two 'migratory' subunits. CASPubMed Google Scholar
Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature404, 995–999 (2000).Together with reference68, this paper identifies the first two receptors in the BAFF pathway. CASPubMed Google Scholar
Xu, S. & Lam, K. P. B-cell maturation protein, which binds the tumor-necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol. Cell Biol.21, 4067–4074 (2001). CASPubMedPubMed Central Google Scholar
Yan, M. et al. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nature Immunol.1, 37–41 (2000). CAS Google Scholar
Laabi, Y., Egle, A. & Strasser, A. TNF cytokine family: more BAFF-ling complexities. Curr. Biol.11, R1013–R1016 (2001). CASPubMed Google Scholar
Thompson, J. S. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science293, 2108–2111 (2001).Together with reference70, this study identifies a third, specific BAFF receptor that has an important impact on B-cell development. CASPubMed Google Scholar
Yan, M. et al. Identification of a novel receptor for B-lymphocyte stimulator that is mutated in a mouse strain with severe B-cell deficiency. Curr. Biol.11, 1547–1552 (2001). CASPubMed Google Scholar
MacKay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med.190, 1697–1710 (1999). CASPubMedPubMed Central Google Scholar
Batten, M. et al. BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med.192, 1453–1465 (2000). CASPubMedPubMed Central Google Scholar
Khare, S. D. et al. Severe B-cell hyperplasia and autoimmune disease in TALL-1-transgenic mice. Proc. Natl Acad. Sci. USA97, 3370–3375 (2000). CASPubMedPubMed Central Google Scholar
Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science293, 2111–2114 (2001). CASPubMed Google Scholar
von Bulow, G. U., van Deursen, J. M. & Bram, R. J. Regulation of the T-independent humoral response by TACI. Immunity14, 573–582 (2001).Together with reference76, this paper implicates TACI as being crucial in T-cell-independent immune responses and as an attenuator of B-cell development and signalling. CASPubMed Google Scholar
Yan, M. et al. Activation and accumulation of B cells in TACI-deficient mice. Nature Immunol.2, 638–643 (2001). CAS Google Scholar
Nishimura, H., Minato, N., Nakano, T. & Honjo, T. Immunological studies on PD-1-deficient mice: implication of PD-1 as a negative regulator for B-cell responses. Int. Immunol.10, 1563–1572 (1998). CASPubMed Google Scholar
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM-motif-carrying immunoreceptor. Immunity11, 141–151 (1999). CASPubMed Google Scholar
Yoshinaga, S. K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature402, 827–832 (1999). CASPubMed Google Scholar
Yoshinaga, S. K. et al. Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int. Immunol.12, 1439–1447 (2000). CASPubMed Google Scholar
Gunn, M. D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature391, 799–803 (1998). CASPubMed Google Scholar
Cyster, J. G. et al. Chemokines and B-cell homing to follicles. Curr. Top. Microbiol. Immunol.246, 87–92 (1999). CASPubMed Google Scholar
Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Abscence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol.1, 31–36 (2000)The first glimpse of a defect that is related to a migratory pathway that affects marginal-zone (MZ) B-cell development; also indicates a role for the MZ in T-cell-independent immune responses. CAS Google Scholar
Fukui, Y. et al. Haematopoietic cell-specific CDM-family protein DOCK2 is essential for lymphocyte migration. Nature412, 826–831 (2001).DOCK2 is a crucial molecule for the chemokine-mediated activation of Rac and lymphocyte migration; DOCK2-deficient animals lack marginal-zone and B1 B cells, in addition to other defects. CASPubMed Google Scholar
Girkontaite, I. et al. Lsc is required for marginal-zone B cells, regulation of lymphocyte motility and immune responses. Nature Immunol.2, 855–862 (2001).Lsc is another player in the lymphocyte-migration pathway, which, when missing, affects marginal-zone but not B1 B cells. CAS Google Scholar
Doody, G. M. et al. Signal transduction through Vav-2 participates in humoral immune responses and B-cell maturation. Nature Immunol.2, 542–547 (2001). CAS Google Scholar
Tedford, K. et al. Compensation between Vav-1 and Vav-2 in B-cell development and antigen-receptor signaling. Nature Immunol.2, 548–555 (2001). CAS Google Scholar
Hla, T., Lee, M. J., Ancellin, N., Paik, J. H. & Kluk, M. J. Lysophospholipids – receptor revelations. Science294, 1875–1878 (2001). CASPubMed Google Scholar
Le, L. Q. et al. Mice lacking the orphan G-protein-coupled receptor G2A develop a late-onset autoimmune syndrome. Immunity14, 561–571 (2001). CASPubMed Google Scholar
Shi, C. S. & Kehrl, J. H. PYK2 links G(q)α and G(13)α signaling to NF-κB activation. J. Biol. Chem.276, 31845–31850 (2001). CASPubMed Google Scholar
Moratz, C. et al. Regulator of G protein signaling 1 (RGS1) markedly impairs Giα signaling responses of B lymphocytes. J. Immunol.164, 1829–1838 (2000). CASPubMed Google Scholar
Reif, K. & Cyster, J. G. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol.164, 4720–4729 (2000). CASPubMed Google Scholar
Cariappa, A., Liou, H.-C. & Pillai, S. Nuclear factor κB is required for the development of marginal-zone B lymphocytes. J. Exp. Med.192, 1175–1182 (2000). CASPubMedPubMed Central Google Scholar
Weih, D. S., Yilmaz, Z. B. & Weih, F. Essential role of RelB in germinal-center and marginal-zone formation and proper expression of homing chemokines. J. Immunol.167, 1909–1919 (2001). CASPubMed Google Scholar
Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J.19, 6351–6360 (2000). CASPubMedPubMed Central Google Scholar
Fagarasan, S. et al. Alymphoplasia (aly)-type nuclear-factor-κB-inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut-associated lymphatic tissue system. J. Exp. Med.191, 1477–1486 (2000). CASPubMedPubMed Central Google Scholar
Yin, L. et al. Defective lymphotoxin-β-receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science291, 2162–2165 (2001). CASPubMed Google Scholar
Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science293, 1495–1499 (2001). CASPubMed Google Scholar
Kaisho, T. et al. IκB kinase-α is essential for mature B-cell development and function. J. Exp. Med.193, 417–426 (2001). CASPubMedPubMed Central Google Scholar
Hu, C. J. et al. PU.1/Spi-B regulation of c-rel is essential for mature B-cell survival. Immunity15, 545–555 (2001). CASPubMed Google Scholar
Cheng, P. et al. Notch-1 regulates NF-κB activity in hemopoietic progenitor cells. J. Immunol.167, 4458–4467 (2001). CASPubMed Google Scholar
Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic-fringe-mediated inhibition of Notch-1. Immunity15, 225–236 (2001). CASPubMed Google Scholar
Wilson, A., MacDonald, H. R. & Radtke, F. Notch-1-deficient common lymphoid precursors adopt a B-cell fate in the thymus. J. Exp. Med.194, 1003–1012 (2001). CASPubMedPubMed Central Google Scholar
Humbert, P. O. & Corcoran, L. M. Oct-2 gene disruption eliminates the peritoneal B-1 lymphocyte lineage and attenuates B-2 cell maturation and function. J. Immunol.159, 5273–5284 (1997). CASPubMed Google Scholar
Martin, F. & Kearney, J. F. Selection in the mature B-cell repertoire. Curr. Top. Microbiol. Immunol.252, 97–105 (2000). CASPubMed Google Scholar
Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal-zone B cells depends on the rate of clonal production, CD19 and btk. Immunity12, 39–49 (2000). CASPubMed Google Scholar
Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance and protective immunity. J. Clin. Invest.105, 1731–1740 (2000). CASPubMedPubMed Central Google Scholar
Gumperz, J. E. et al. Murine CD1d-restricted T-cell recognition of cellular lipids. Immunity12, 211–221 (2000). CASPubMed Google Scholar
Martin, F., Oliver, A. M. & Kearney, J. F. Marginal-zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity14, 617–629 (2001). CASPubMed Google Scholar
Qian, Y., Santiago, C., Borrero, M., Tedder, T. F. & Clarke, S. H. Lupus-specific antiribonucleoprotein B-cell tolerance in nonautoimmune mice is maintained by differentiation to B-1 and governed by B-cell receptor signaling thresholds. J. Immunol.166, 2412–2419 (2001). CASPubMed Google Scholar
Grimaldi, C. M., Michael, D. J. & Diamond, B. Cutting edge: expansion and activation of a population of autoreactive marginal-zone B cells in a model of estrogen-induced lupus. J. Immunol.167, 1886–1890 (2001). CASPubMed Google Scholar
Wither, J. E., Roy, V. & Brennan, L. A. Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB × NZW)F(1) mice. Clin. Immunol.94, 51–63 (2000). CASPubMed Google Scholar
Segundo, C. et al. Thyroid-infiltrating B lymphocytes in Graves' disease are related to marginal-zone and memory B-cell compartments. Thyroid11, 525–530 (2001). CASPubMed Google Scholar
Groom, J. et al. Association of BAFF/BLyS overexpression and altered B-cell differentiation with Sjogren's syndrome. J. Clin. Invest.109, 59–68 (2002). CASPubMedPubMed Central Google Scholar
Korganow, A. S. et al. From systemic T-cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity10, 451–461 (1999). CASPubMed Google Scholar
Hori, M. et al. Non-Hodgkin lymphomas of mice. Blood Cells Mol. Dis.27, 217–222 (2001). CASPubMed Google Scholar
Morse, H. C. et al. Cells of the marginal zone — origins, function and neoplasia. Leuk. Res.25, 169–178 (2001). CASPubMed Google Scholar
Kraal, G. Cells in the marginal zone of the spleen. Int. Rev. Cytol.132, 31–74 (1992). CASPubMed Google Scholar
Pettersen, J. C., Borgen, D. F. & Graupner, K. C. A morphological and histochemical study of the primary and secondary immune responses in the rat spleen. Am. J. Anat.121, 305–317 (1967). CASPubMed Google Scholar
Clark, J. M. & Weiss, L. Effects of a bacterial vaccine on the marginal zone of the spleen. Am. J. Anat.132, 79–92 (1971). CASPubMed Google Scholar
Kumararatne, D. S., Bazin, H. & MacLennan, I. C. Marginal zones: the major B-cell compartment of rat spleens. Eur. J. Immunol.11, 858–864 (1981). CASPubMed Google Scholar
Kumararatne, D. S. & MacLennan, I. C. Cells of the marginal zone of the spleen are lymphocytes derived from recirculating precursors. Eur. J. Immunol.11, 865–869 (1981). CASPubMed Google Scholar
Kumararatne, D. S., MacLennan, I. C., Bazin, H. & Gray, D. Marginal zones: the largest B-cell compartment of the rat spleen. Adv. Exp. Med. Biol.149, 67–73 (1982). CASPubMed Google Scholar
Gray, D., Kumararatne, D. S., Lortan, J., Khan, M. & MacLennan, I. C. Relation of intra-splenic migration of marginal-zone B cells to antigen localization on follicular dendritic cells. Immunology52, 659–669 (1984). CASPubMedPubMed Central Google Scholar
Humphrey, J. H. Splenic macrophages: antigen-presenting cells for T1-2 antigens. Immunol. Lett.11, 149–152 (1985). CASPubMed Google Scholar
Kraal, G. & Janse, M. Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology58, 665–669 (1986). CASPubMedPubMed Central Google Scholar
Dijkstra, C. D., Van, V. E., Dopp, E. A., van der Lelij, A. A. & Kraal, G. Marginal-zone macrophages identified by a monoclonal antibody: characterization of immuno- and enzyme-histochemical properties and functional capacities. Immunology55, 23–30 (1985). CASPubMedPubMed Central Google Scholar
Balazs, M., Horvath, G., Grama, L. & Balogh, P. Phenotypic identification and development of distinct microvascular compartments in the postnatal mouse spleen. Cell. Immunol.212, 126–137 (2001). CASPubMed Google Scholar
Liu, Y. J., Zhang, J., Lane, P. J., Chan, E. Y. & MacLennan, I. C. Sites of specific B-cell activation in primary and secondary responses to T-cell-dependent and T-cell-independent antigens. Eur. J. Immunol.21, 2951–2962 (1991). CASPubMed Google Scholar
Dunn-Walters, D. K., Isaacson, P. G. & Spencer, J. Analysis of mutations in immunoglobulin heavy-chain variable-region genes of microdissected marginal-zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J. Exp. Med.182, 559–566 (1995). CASPubMed Google Scholar
Spencer, J., Perry, M. E. & Dunn–Walters, D. K. Human marginal-zone B cells. Immunol. Today19, 421–426 (1998). CASPubMed Google Scholar