Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med.199, 971–979 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med.200, 277–285 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lindley, S. et al. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes54, 92–99 (2005). ArticleCASPubMed Google Scholar
Belkaid, Y. Regulatory T cells and infection: a dangerous necessity. Nature Rev. Immunol.7, 875–888 (2007). ArticleCAS Google Scholar
Nishikawa, H. & Sakaguchi, S. Regulatory T cells in tumor immunity. Int. J. Cancer127, 759–767 (2010). CASPubMed Google Scholar
Feuerer, M., Hill, J. A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunol.10, 689–695 (2009). ArticleCAS Google Scholar
Campbell, D. J., Kim, C. H. & Butcher, E. C. Chemokines in the systemic organization of immunity. Immunol. Rev.195, 58–71 (2003). ArticleCASPubMed Google Scholar
Sather, B. D. et al. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med.204, 1335–1347 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dudda, J. C., Perdue, N., Bachtanian, E. & Campbell, D. J. Foxp3+ regulatory T cells maintain immune homeostasis in the skin. J. Exp. Med.205, 1559–1565 (2008). ArticleCASPubMedPubMed Central Google Scholar
Suffia, I., Reckling, S. K., Salay, G. & Belkaid, Y. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J. Immunol.174, 5444–5455 (2005). ArticleCASPubMed Google Scholar
Freyschmidt, E. J. et al. Skin inflammation arising from cutaneous regulatory T cell deficiency leads to impaired viral immune responses. J. Immunol.185, 1295–1302 (2010). ArticleCASPubMed Google Scholar
Schneider, M. A., Meingassner, J. G., Lipp, M., Moore, H. D. & Rot, A. CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J. Exp. Med.204, 735–745 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol.181, 8391–8401 (2008). ArticleCASPubMed Google Scholar
Santodomingo-Garzon, T., Han, J., Le, T., Yang, Y. & Swain, M. G. Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology49, 1267–1276 (2008). ArticleCAS Google Scholar
Muller, M. et al. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol.179, 2774–2786 (2007). ArticlePubMed Google Scholar
Zhang, N. et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity.30, 458–469 (2009). This study showed that TRegcells must accumulate in both the draining lymph node and transplanted tissue in order to prevent islet allograft rejection. ArticleCASPubMedPubMed Central Google Scholar
Lee, J. H., Kang, S. G. & Kim, C. H. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J. Immunol.178, 301–311 (2007). ArticleCASPubMed Google Scholar
Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med.199, 303–313 (2004). This study was the first to demonstrate that, based on their expression of homing receptors, TRegcells could be subdivided into populations resembling naive T cells and effector- or memory-like T cells. ArticleCASPubMedPubMed Central Google Scholar
Min, B. et al. Gut flora antigens are not important in the maintenance of regulatory T cell heterogeneity and homeostasis. Eur. J. Immunol.37, 1916–1923 (2007). ArticleCASPubMed Google Scholar
Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med.190, 995–1004 (1999). ArticleCASPubMedPubMed Central Google Scholar
Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature420, 502–507 (2002). This study demonstrated that TRegcells at the site of infection can impair pathogen clearance and thereby help to maintain a depot of antigen that contributes to persistence of pathogen-specific immunity. ArticleCASPubMed Google Scholar
Loser, K. et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. J. Immunol.179, 365–371 (2007). ArticleCASPubMed Google Scholar
Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity.28, 546–558 (2008). This paper defined the essential contribution of TRegcell-derived IL-10 in preventing inflammatory disease at barrier tissues. ArticleCASPubMed Google Scholar
Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science322, 271–275 (2008). This study demonstrated that TRegcells must express CTLA4 to prevent fatal lymphoproliferative autoimmune disease. ArticleCASPubMed Google Scholar
Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol.4, 1206–1212 (2003). ArticleCAS Google Scholar
Onodera, T. et al. Constitutive expression of IDO by dendritic cells of mesenteric lymph nodes: functional involvement of the CTLA-4/B7 and CCL22/CCR4 interactions. J. Immunol.183, 5608–5614 (2009). ArticleCASPubMed Google Scholar
Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med.203, 505–511 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol.7, 83–92 (2006). References 29 and 30 used two-photon microscopy to demonstrate that within lymph nodes TRegcells interact predominantly with DCs. ArticleCAS Google Scholar
Boissonnas, A. et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity.32, 266–278 (2010). ArticleCASPubMed Google Scholar
Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol.8, 191–197 (2007). ArticleCAS Google Scholar
Lund, J. M., Hsing, L., Pham, T. T. & Rudensky, A. Y. Coordination of early protective immunity to viral infection by regulatory T cells. Science320, 1220–1224 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol.8, 523–532 (2008). ArticleCAS Google Scholar
Chen, Z., Laurence, A. & O'Shea, J. J. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin. Immunol.19, 400–408 (2007). ArticleCASPubMedPubMed Central Google Scholar
Szabo, S. J., Sullivan, B. M., Peng, S. L. & Glimcher, L. H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol.21, 713–758 (2003). ArticleCASPubMed Google Scholar
Ansel, K. M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol.24, 607–656 (2006). ArticleCASPubMed Google Scholar
Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell100, 655–669 (2000). ArticleCASPubMed Google Scholar
Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell89, 587–596 (1997). ArticleCASPubMed Google Scholar
Dardalhon, V., Korn, T., Kuchroo, V. K. & Anderson, A. C. Role of Th1 and Th17 cells in organ-specific autoimmunity. J. Autoimmun.31, 252–256 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, H. Y., DeKruyff, R. H. & Umetsu, D. T. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nature Immunol.11, 577–584 (2010). ArticleCAS Google Scholar
Townsend, M. J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14_i_ NKT cells. Immunity.20, 477–494 (2004). ArticleCASPubMed Google Scholar
Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science295, 338–342 (2002). ArticleCASPubMed Google Scholar
Sullivan, B. M., Juedes, A., Szabo, S. J., von Herrath, M. & Glimcher, L. H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl Acad. Sci. USA100, 15818–15823 (2003). ArticleCASPubMedPubMed Central Google Scholar
Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunol.10, 595–602 (2009). ArticleCAS Google Scholar
Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature458, 351–356 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity.31, 941–952 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science326, 986–991 (2009). Along with references 47 and 48, this study demonstrated that TRegcells utilize distinct molecular programmes to control TH1-, TH2- and TH17-type responses. ArticleCASPubMedPubMed Central Google Scholar
Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nature Immunol.10, 769–777 (2009). This study showed that, through selective induction of the AKT–mTOR pathway, S1P1restrains thymic TReggeneration and peripheral TRegfunction. ArticleCAS Google Scholar
Ghoreishi, M. et al. Expansion of antigen-specific regulatory T cells with the topical vitamin D analog calcipotriol. J. Immunol.182, 6071–6078 (2009). ArticleCASPubMed Google Scholar
Jeffery, L. E. et al. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol.183, 5458–5467 (2009). ArticleCASPubMed Google Scholar
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol.4, 330–336 (2003). ArticleCAS Google Scholar
Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunol.6, 1142–1151 (2005). ArticleCAS Google Scholar
Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med.201, 723–735 (2005). This paper showed that IL-2 produced by effector or memory CD4+ T cells controls TRegcell homeostasis. ArticleCASPubMedPubMed Central Google Scholar
Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol.178, 280–290 (2007). ArticleCASPubMed Google Scholar
Soper, D. M., Kasprowicz, D. J. & Ziegler, S. F. IL-2Rβ links IL-2R signaling with Foxp3 expression. Eur. J. Immunol.37, 1817–1826 (2007). ArticleCASPubMed Google Scholar
Burkett, P. R. et al. Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J. Exp. Med.200, 825–834 (2004). ArticleCASPubMedPubMed Central Google Scholar
Siewert, C. et al. Induction of organ-selective CD4+ regulatory T cell homing. Eur. J. Immunol.37, 978–989 (2007). ArticleCASPubMed Google Scholar
Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science317, 256–260 (2007). ArticleCASPubMed Google Scholar
Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med.204, 1757–1764 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med.204, 1775–1785 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J. Immunol.185, 2675–2679 (2010). ArticleCASPubMed Google Scholar
Gorman, S. et al. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J. Immunol.179, 6273–6283 (2007). ArticleCASPubMed Google Scholar
Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nature Immunol.8, 285–293 (2007). ArticleCAS Google Scholar
Murphy, K. M. et al. T helper differentiation proceeds through Stat1-dependent, Stat4-dependent and Stat4-independent phases. Curr. Top. Microbiol. Immunol.238, 13–26 (1999). CASPubMed Google Scholar
Cooper, A. M. et al. Disseminated tuberculosis in interferon γ gene-disrupted mice. J. Exp. Med.178, 2243–2247 (1993). ArticleCASPubMed Google Scholar
Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFNγ. Immunity.3, 109–117 (1995). ArticleCASPubMed Google Scholar
Wang, Z. E., Reiner, S. L., Zheng, S., Dalton, D. K. & Locksley, R. M. CD4+ effector cells default to the Th2 pathway in interferon γ-deficient mice infected with Leishmania major. J. Exp. Med.179, 1367–1371 (1994). ArticleCASPubMed Google Scholar
Caretto, D., Katzman, S. D., Villarino, A. V., Gallo, E. & Abbas, A. K. Cutting edge: the Th1 response inhibits the generation of peripheral regulatory T cells. J. Immunol.184, 30–34 (2010). ArticleCASPubMed Google Scholar
Lu, L. F. et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell142, 914–929 (2010). This study demonstrated that the microRNA miR-146a dampens STAT1 activity in TRegcells and prevents them from acquiring pro-inflammatory effector functions. ArticleCASPubMedPubMed Central Google Scholar
Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity.31, 772–786 (2009). This paper showed that during intestinal infection withToxoplasma gondii, TRegcells downregulate FOXP3, acquire TH1 effector functions and contribute to infection-associated immunopathology. ArticleCASPubMedPubMed Central Google Scholar
Kishimoto, T. IL-6: from its discovery to clinical applications. Int. Immunol.22, 347–352 (2010). ArticleCASPubMed Google Scholar
Bettelli, E., Oukka, M. & Kuchroo, V. K. TH-17 cells in the circle of immunity and autoimmunity. Nature Immunol.8, 345–350 (2007). ArticleCAS Google Scholar
Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441, 235–238 (2006). This study defined the role of IL-6 in controlling TH17 and iTRegcell differentiation. ArticleCASPubMed Google Scholar
Zheng, S. G., Wang, J. & Horwitz, D. A. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-β are resistant to Th17 conversion by IL-6. J. Immunol.180, 7112–7116 (2008). ArticleCASPubMed Google Scholar
Xu, L., Kitani, A., Fuss, I. & Strober, W. Cutting edge: regulatory T cells induce CD4+CD25−Foxp3− T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. J. Immunol.178, 6725–6729 (2007). ArticleCASPubMed Google Scholar
Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science299, 1033–1036 (2003). ArticleCASPubMed Google Scholar
Mima, T. & Nishimoto, N. Clinical value of blocking IL-6 receptor. Curr. Opin. Rheumatol.21, 224–230 (2009). ArticleCASPubMed Google Scholar
Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3− effector T cells. Nature Immunol.9, 1347–1355 (2008). ArticleCAS Google Scholar
Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunol.9, 1341–1346 (2008). ArticleCAS Google Scholar
Pillemer, B. B. et al. STAT6 activation confers upon T helper cells resistance to suppression by regulatory T cells. J. Immunol.183, 155–163 (2009). ArticleCASPubMed Google Scholar
Maerten, P. et al. Effects of interleukin 4 on CD25+CD4+ regulatory T cell function. J. Autoimmun.25, 112–120 (2005). ArticleCASPubMed Google Scholar
Namdar, A., Nikbin, B., Ghabaee, M., Bayati, A. & Izad, M. Effect of IFN-β therapy on the frequency and function of CD4+CD25+ regulatory T cells and Foxp3 gene expression in relapsing-remitting multiple sclerosis (RRMS): a preliminary study. J. Neuroimmunol.218, 120–124 (2010). ArticleCASPubMed Google Scholar
Vandenbark, A. A. et al. Interferon-β-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol.215, 125–128 (2009). ArticleCASPubMed Google Scholar
Golding, A., Rosen, A., Petri, M., Akhter, E. & Andrade, F. Interferon-α regulates the dynamic balance between human activated regulatory and effector T cells: implications for antiviral and autoimmune responses. Immunology131, 107–117 (2010). CASPubMedPubMed Central Google Scholar
Chen, X., Baumel, M., Mannel, D. N., Howard, O. M. & Oppenheim, J. J. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J. Immunol.179, 154–161 (2007). ArticleCASPubMed Google Scholar
Ma, H. L. et al. Tumor necrosis factor α blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum.62, 430–440 (2010). ArticleCASPubMed Google Scholar
Brinster, C. & Shevach, E. M. Costimulatory effects of IL-1 on the expansion/differentiation of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3− T cells. J. Leukoc. Biol.84, 480–487 (2008). ArticleCASPubMedPubMed Central Google Scholar
Deknuydt, F., Bioley, G., Valmori, D. & Ayyoub, M. IL-1β and IL-2 convert human Treg into TH17 cells. Clin. Immunol.131, 298–307 (2009). ArticleCASPubMed Google Scholar
Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science323, 1488–1492 (2009). ArticleCASPubMed Google Scholar
Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA106, 1903–1908 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature445, 771–775 (2007). ArticleCASPubMed Google Scholar
Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nature Immunol.10, 1000–1007 (2009). ArticleCAS Google Scholar
Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity.30, 155–167 (2009). By performing genome-wide analysis of histone modification, this study demonstrated the potential for substantial functional plasticity in CD4+ T cell subsets. ArticlePubMedPubMed CentralCAS Google Scholar
Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science329, 1667–1671 (2010). Along with reference 101, this study used lineage tracing to examine the phenotypical and functional stability of TRegcells in different immune settings. ArticleCASPubMedPubMed Central Google Scholar
Akbar, A. N., Vukmanovic-Stejic, M., Taams, L. S. & Macallan, D. C. The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nature Rev. Immunol.7, 231–237 (2007). ArticleCAS Google Scholar
Allan, S. E. et al. CD4+ T-regulatory cells: toward therapy for human diseases. Immunol. Rev.223, 391–421 (2008). ArticleCASPubMed Google Scholar
Picca, C. C. et al. Role of TCR specificity in CD4+ CD25+ regulatory T-cell selection. Immunol. Rev.212, 74–85 (2006). ArticlePubMed Google Scholar
Lathrop, S. K., Santacruz, N. A., Pham, D., Luo, J. & Hsieh, C. S. Antigen-specific peripheral shaping of the natural regulatory T cell population. J. Exp. Med.205, 3105–3117 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol.171, 3348–3352 (2003). ArticleCASPubMed Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity.12, 431–440 (2000). ArticleCASPubMed Google Scholar
Darrasse-Jeze, G. et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med.206, 1853–1862 (2009). This paper demonstrated that,in vivo, TRegcell and DC homeostasis are intricately linked. ArticleCASPubMedPubMed Central Google Scholar
Bollyky, P. L. et al. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J. Leukoc. Biol.86, 567–572 (2009). ArticleCASPubMedPubMed Central Google Scholar
Venturi, G. M., Conway, R. M., Steeber, D. A. & Tedder, T. F. CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J. Immunol.178, 291–300 (2007). ArticleCASPubMed Google Scholar
Szanya, V., Ermann, J., Taylor, C., Holness, C. & Fathman, C. G. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol.169, 2461–2465 (2002). ArticleCASPubMed Google Scholar
Hirahara, K. et al. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J. Immunol.177, 4488–4494 (2006). ArticleCASPubMed Google Scholar
Siegmund, K. et al. Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood106, 3097–3104 (2005). ArticleCASPubMedPubMed Central Google Scholar
Denning, T. L., Kim, G. & Kronenberg, M. Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J. Immunol.174, 7487–7491 (2005). ArticleCASPubMed Google Scholar
Lim, H. W., Lee, J., Hillsamer, P. & Kim, C. H. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J. Immunol.180, 122–129 (2008). ArticleCASPubMed Google Scholar
Kang, S. G. et al. Identification of a chemokine network that recruits FoxP3+ regulatory T cells into chronically inflamed intestine. Gastroenterology132, 966–981 (2007). ArticleCASPubMed Google Scholar
Yurchenko, E. et al. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J. Exp. Med.203, 2451–2460 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kleinewietfeld, M. et al. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T cell subset. Blood105, 2877–2886 (2004). ArticlePubMedCAS Google Scholar
Hirota, K. et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med.204, 2803–2812 (2007). ArticleCASPubMedPubMed Central Google Scholar
Soler, D. et al. CCR8 expression identifies CD4 memory T cells enriched for FOXP3+ regulatory and Th2 effector lymphocytes. J. Immunol.177, 6940–6951 (2006). ArticleCASPubMed Google Scholar
Guo, Z. et al. CD4+CD25+ regulatory T cells in the small intestinal lamina propria show an effector/memory phenotype. Int. Immunol.20, 307–315 (2008). ArticleCASPubMed Google Scholar
Eksteen, B. et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J. Immunol.177, 593–603 (2006). ArticleCASPubMed Google Scholar
Oo, Y. H. et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J. Immunol.184, 2886–2898 (2010). ArticleCASPubMed Google Scholar
Lim, H. W., Broxmeyer, H. E. & Kim, C. H. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J. Immunol.177, 840–851 (2006). ArticleCASPubMed Google Scholar
Lim, H. W., Hillsamer, P. & Kim, C. H. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J. Clin. Invest.114, 1640–1649 (2004). ArticleCASPubMedPubMed Central Google Scholar
Grauer, O. M. et al. CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int. J. Cancer121, 95–105 (2007). ArticleCASPubMed Google Scholar
Wald, O. et al. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J. Immunol.177, 6983–6990 (2006). ArticleCASPubMed Google Scholar