Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev.182, 18–32 (2001). ArticleCASPubMed Google Scholar
Shevach, E. M. et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol. Rev.212, 60–73 (2006). ArticleCASPubMed Google Scholar
Xystrakis, E., Boswell, S. E. & Hawrylowicz, C. M. T regulatory cells and the control of allergic disease. Expert. Opin. Biol. Ther.6, 121–133 (2006). ArticleCASPubMed Google Scholar
Coombes, J. L., Robinson, N. J., Maloy, K. J., Uhlig, H. H. & Powrie, F. Regulatory T cells and intestinal homeostasis. Immunol. Rev.204, 184–194 (2005). ArticleCASPubMed Google Scholar
Belkaid, Y. Regulatory T cells and infection: a dangerous necessity. Nature Rev. Immunol.7, 875–888 (2007). ArticleCAS Google Scholar
Rouse, B. T., Sarangi, P. P. & Suvas, S. Regulatory T cells in virus infections. Immunol. Rev.212, 272–286 (2006). ArticleCASPubMed Google Scholar
Kretschmer, K., Apostolou, I., Jaeckel, E., Khazaie, K. & von Boehmer, H. Making regulatory T cells with defined antigen specificity: role in autoimmunity and cancer. Immunol. Rev.212, 163–169 (2006). ArticleCASPubMed Google Scholar
Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science299, 1057–1061 (2003). ArticleCASPubMed Google Scholar
Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol.4, 330–336 (2003). References 8 and 9 provided the first direct evidence that FOXP3 is required for TReg-cell development and is sufficient to confer regulatory activity on naive T cells. ArticleCAS Google Scholar
Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature Genet.27, 20–21 (2001). ArticleCASPubMed Google Scholar
Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genet.27, 18–20 (2001). ArticleCASPubMed Google Scholar
Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet.27, 68–73 (2001). References 10–12 were the first to identifyFOXP3as the defective gene in patients with IPEX and in scurfy mice. ArticleCASPubMed Google Scholar
Ramsdell, F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity19, 165–168 (2003). ArticleCASPubMed Google Scholar
Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity27, 786–800 (2007). ArticleCASPubMed Google Scholar
Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol.19, 345–354 (2007). ArticleCASPubMed Google Scholar
Morgan, M. E. et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum. Immunol.66, 13–20 (2005). ArticleCASPubMed Google Scholar
Wang, J., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W. & Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol.37, 129–138 (2007). ArticleCASPubMed Google Scholar
Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA103, 6659–6664 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tran, D. Q., Ramsey, H. & Shevach, E. M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β-dependent but does not confer a regulatory phenotype. Blood110, 2983–2990 (2007). ArticleCASPubMedPubMed Central Google Scholar
Vignali, D. How many mechanisms do regulatory T cells need? Eur. J. Immunol.38, 908–911 (2008). ArticleCASPubMed Google Scholar
Tang, Q. & Bluestone, J. A. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunol.9, 239–244 (2008). ArticleCAS Google Scholar
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155, 1151–1164 (1995). This seminal paper re-ignited interest in 'suppressor' cells by demonstrating that a small CD4+CD25+ T-cell population had regulatory activity. CASPubMed Google Scholar
Shevach, E. M. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity25, 195–201 (2006). ArticleCASPubMed Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol.10, 1969–1980 (1998). ArticleCASPubMed Google Scholar
Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188, 287–296 (1998). ArticleCASPubMedPubMed Central Google Scholar
Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med.193, 1303–1310 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med.193, 1285–1294 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hawrylowicz, C. M. & O'Garra, A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nature Rev. Immunol.5, 271–283 (2005). ArticleCAS Google Scholar
Annacker, O., Asseman, C., Read, S. & Powrie, F. Interleukin-10 in the regulation of T cell-induced colitis. J. Autoimmun.20, 277–279 (2003). ArticleCASPubMed Google Scholar
Joetham, A. et al. Naturally occurring lung CD4+CD25+ T cell regulation of airway allergic responses depends on IL-10 induction of TGF-β. J. Immunol.178, 1433–1442 (2007). ArticleCASPubMed Google Scholar
Kearley, J., Barker, J. E., Robinson, D. S. & Lloyd, C. M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J. Exp. Med.202, 1539–1547 (2005). This paper revealed the interesting distinction that IL-10 is required for the TReg-cell-mediated control of airway hyper-reactivity but is derived from the suppressed effector T cells rather than the TRegcells. ArticleCASPubMedPubMed Central Google Scholar
Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity28, 546–558 (2008). ArticleCASPubMed Google Scholar
Stoop, J. N. et al. Tumor necrosis factor α inhibits the suppressive effect of regulatory T cells on the hepatitis B virus-specific immune response. Hepatology46, 699–705 (2007). ArticleCASPubMed Google Scholar
Molitor-Dart, M. L. et al. Developmental exposure to noninherited maternal antigens induces CD4+ T regulatory cells: relevance to mechanism of heart allograft tolerance. J. Immunol.179, 6749–6761 (2007). ArticleCASPubMed Google Scholar
Kursar, M. et al. Cutting Edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J. Immunol.178, 2661–2665 (2007). ArticleCASPubMed Google Scholar
Jankovic, D. et al. Conventional T-bet+Foxp3− Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med.204, 273–283 (2007). ArticleCASPubMedPubMed Central Google Scholar
Anderson, C. F., Oukka, M., Kuchroo, V. J. & Sacks, D. CD4+CD25−Foxp3−Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med.204, 285–297 (2007). ArticleCASPubMedPubMed Central Google Scholar
Beiting, D. P. et al. Coordinated control of immunity to muscle stage Trichinella spiralis by IL-10, regulatory T cells, and TGF-β. J. Immunol.178, 1039–1047 (2007). ArticleCASPubMed Google Scholar
Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med.190, 995–1004 (1999). This paper demonstrated that TRegcells require IL-10 for their maximal regulatory activity. ArticleCASPubMedPubMed Central Google Scholar
Bergmann, C., Strauss, L., Zeidler, R., Lang, S. & Whiteside, T. L. Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol. Immunother.56, 1429–1442 (2007). ArticlePubMed Google Scholar
Loser, K. et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. J. Immunol.179, 365–371 (2007). ArticleCASPubMed Google Scholar
Erhardt, A., Biburger, M., Papadopoulos, T. & Tiegs, G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology45, 475–485 (2007). ArticleCASPubMed Google Scholar
Ivars, F. T cell subset-specific expression of antigen receptor β chains in α chain-transgenic mice. Eur. J. Immunol.22, 635–639 (1992). ArticleCASPubMed Google Scholar
Schumacher, A. et al. Mechanisms of action of regulatory T cells specific for paternal antigens during pregnancy. Obstet. Gynecol.110, 1137–1145 (2007). ArticleCASPubMed Google Scholar
Mann, M. K., Maresz, K., Shriver, L. P., Tan, Y. & Dittel, B. N. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol.178, 3447–3456 (2007). ArticleCASPubMed Google Scholar
Piccirillo, C. A. et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness. J. Exp. Med.196, 237–246 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med.194, 629–644 (2001). This paper demonstrated that TRegcells require cell-surface-bound TGFβ for their maximal regulatory activity. ArticleCASPubMedPubMed Central Google Scholar
Green, E. A., Gorelik, L., McGregor, C. M., Tran, E. H. & Flavell, R. A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β–TGF-β receptor interactions in type 1 diabetes. Proc. Natl Acad. Sci. USA100, 10878–10883 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med.201, 737–746 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-b1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity26, 579–591 (2007). ArticleCASPubMed Google Scholar
Strauss, L. et al. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin. Cancer Res.13, 4345–4354 (2007). ArticleCASPubMed Google Scholar
Hilchey, S. P., De, A., Rimsza, L. M., Bankert, R. B. & Bernstein, S. H. Follicular lymphoma intratumoral CD4+CD25+GITR+ regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8+. J. Immunol.178, 4051–4061 (2007). ArticleCASPubMed Google Scholar
Li, H. et al. CD4+CD25+ regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients. J. Clin. Immunol.27, 317–326 (2007). ArticleCASPubMed Google Scholar
Clayton, A., Mitchell, J. P., Court, J., Mason, M. D. & Tabi, Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res.67, 7458–7466 (2007). ArticleCASPubMed Google Scholar
Xia, Z. W. et al. Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of Foxp3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor-β1. Am. J. Pathol.171, 1904–1914 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ostroukhova, M. et al. Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-β. J. Clin. Invest.116, 996–1004 (2006). ArticleCASPubMedPubMed Central Google Scholar
Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature450, 566–569 (2007). This paper was the first to describe the inhibitory cytokine IL-35 and its requirement for maximal TReg-cell maximal regulatory activity. ArticleCASPubMed Google Scholar
Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature445, 771–775 (2007). ArticleCASPubMed Google Scholar
Lieberman, J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nature Rev. Immunol.3, 361–370 (2003). ArticleCAS Google Scholar
Grossman, W. J. et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood104, 2840–2848 (2004). ArticleCASPubMed Google Scholar
McHugh, R. S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity16, 311–323 (2002). ArticleCASPubMed Google Scholar
Herman, A. E., Freeman, G. J., Mathis, D. & Benoist, C. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med.199, 1479–1489 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol.174, 1783–1786 (2005). This paper was the first to demonstrate that TRegcells have cytolytic capacity and regulate in a granzyme-B-dependent manner. Reference 66 subsequently showed that the granzyme-dependent lytic activity of TRegcells was required for their regulatory activityin vivo. ArticleCASPubMed Google Scholar
Zhao, D. M., Thornton, A. M., DiPaolo, R. J. & Shevach, E. M. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood107, 3925–3932 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity27, 635–646 (2007). ArticleCASPubMed Google Scholar
Ren, X. et al. Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4+CD25+ regulatory T cells. Cell Death. Differ.14, 2076–2084 (2007). ArticleCASPubMed Google Scholar
Garin, M. I. et al. Galectin-1: a key effector of regulation meditated by CD4+CD25+ T cells. Blood109, 2058–2065 (2007). ArticleCASPubMed Google Scholar
de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol.34, 2480–2488 (2004). ArticleCASPubMed Google Scholar
Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunol.6, 1142–1151 (2005). ArticleCAS Google Scholar
Duthoit, C. T., Mekala, D. J., Alli, R. S. & Geiger, T. L. Uncoupling of IL-2 signaling from cell cycle progression in naive CD4+ T cells by regulatory CD4+CD25+ T lymphocytes. J. Immunol.174, 155–163 (2005). ArticleCASPubMed Google Scholar
Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature Immunol.8, 1353–1362 (2007). ArticleCAS Google Scholar
Oberle, N., Eberhardt, N., Falk, C. S., Krammer, P. H. & Suri-Payer, E. Rapid suppression of cytokine transcription in human CD4+CD25− T cells by CD4+Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-β, and various inhibitors of TCR signaling. J. Immunol.179, 3578–3587 (2007). ArticleCASPubMed Google Scholar
Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med.204, 1257–1265 (2007). ArticleCASPubMedPubMed Central Google Scholar
Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood110, 1225–1232 (2007). ArticleCASPubMed Google Scholar
Kobie, J. J. et al. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J. Immunol.177, 6780–6786 (2006). References 74–76 collectively revealed the ability of TRegcells to generate the inhibitory molecule adenosine by selective expression of CD39 and CD73. Reference 79 showed that another inhibitory adenosine nucleoside, cAMP, is directly transferred into effector T cells via gap junctions. ArticleCASPubMed Google Scholar
Zarek, P. E. et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood111, 251–259 (2008). ArticleCASPubMedPubMed Central Google Scholar
Oukka, M. Interplay between pathogenic Th17 and regulatory T cells. Ann. Rheum. Dis.66 (Suppl 3), iii87–90 (2007). CASPubMedPubMed Central Google Scholar
Bopp, T. et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med.204, 1303–1310 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bluestone, J. A. & Tang, Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr. Opin. Immunol.17, 638–642 (2005). ArticleCASPubMed Google Scholar
Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nature Immunol.7, 83–92 (2006). ArticleCAS Google Scholar
Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med.203, 505–511 (2006). References 81 and 82 revealed the importance of TReg-cell–DC interactions as a mechanism for blocking effector-T-cell activation. ArticleCASPubMedPubMed Central Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+ CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). This paper demonstrated that TRegcells require CTLA4 for their maximal regulatory activityin vivo. ArticleCASPubMedPubMed Central Google Scholar
Oderup, C., Cederbom, L., Makowska, A., Cilio, C. M. & Ivars, F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology118, 240–249 (2006). ArticleCASPubMedPubMed Central Google Scholar
Serra, P. et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity19, 877–889 (2003). ArticleCASPubMed Google Scholar
Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol.4, 1206–1212 (2003). This paper shows that TRegcells initiate the IDO-mediated catabolism of tryptophan in a CTLA4-dependent manner. ArticleCAS Google Scholar
Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol.4, 762–774 (2004). ArticleCAS Google Scholar
Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol.30, 1538–1543 (2000). ArticleCASPubMed Google Scholar
Kryczek, I. et al. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J. Immunol.177, 40–44 (2006). ArticleCASPubMed Google Scholar
Lewkowich, I. P. et al. CD4+CD25+ T cells protect against experimentally induced asthma and alter pulmonary dendritic cell phenotype and function. J. Exp. Med.202, 1549–1561 (2005). ArticleCASPubMedPubMed Central Google Scholar
Houot, R., Perrot, I., Garcia, E., Durand, I. & Lebecque, S. Human CD4+CD25high regulatory T cells modulate myeloid but not plasmacytoid dendritic cells activation. J. Immunol.176, 5293–5298 (2006). ArticleCASPubMed Google Scholar
Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M. D. & Kaveri, S. V. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol.172, 4676–4680 (2004). ArticleCASPubMed Google Scholar
Taams, L. S. et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum. Immunol.66, 222–230 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tiemessen, M. M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl Acad. Sci. USA104, 19446–19451 (2007). ArticleCASPubMedPubMed Central Google Scholar
Workman, C. J. & Vignali, D. A. A. Negative regulation of T cell homeostasis by LAG-3 (CD223). J. Immunol.174, 688–695 (2004). Article Google Scholar
Liang, B. et al. Regulatory T cells inhibit dendritic cells by LAG-3 engagement of MHC class II. J. Immunol.180, 5916–5926 (2008). ArticleCASPubMed Google Scholar
Baecher-Allan, C., Wolf, E. & Hafler, D. A. MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol.176, 4622–4631 (2006). ArticleCASPubMed Google Scholar
Sarris, M., Andersen, K. G., Randow, F., Mayr, L. & Betz, A. G. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity28, 402–413 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature442, 997–1002 (2006). ArticleCASPubMed Google Scholar
Kaplan, D. Autocrine secretion and the physiological concentration of cytokines. Immunol. Today17, 303–304 (1996). ArticleCASPubMed Google Scholar
Kleinewietfeld, M. et al. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood105, 2877–2886 (2005). ArticleCASPubMed Google Scholar
Baecher-Allan, C., Wolf, E. & Hafler, D. A. MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol.176, 4622–4631 (2006). ArticleCASPubMed Google Scholar
Thornton, A. M., Donovan, E. E., Piccirillo, C. A. & Shevach, E. M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol.172, 6519–6523 (2004). ArticleCASPubMed Google Scholar
Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol.8, 191–197 (2007). ArticleCAS Google Scholar
Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity22, 329–341 (2005). ArticleCASPubMed Google Scholar
Yi, H., Zhen, Y., Jiang, L., Zheng, J. & Zhao, Y. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell. Mol. Immunol.3, 189–195 (2006). CASPubMed Google Scholar
Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203, 1693–1700 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ TReg cells. J. Exp. Med.203, 1701–1711 (2006). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, T. et al. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity27, 145–159 (2007). ArticleCASPubMed Google Scholar
Fontenot, J. D., Dooley, J. L., Farr, A. G. & Rudensky, A. Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med.202, 901–906 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hsieh, C. S. et al. Recognition of the peripheral self by naturally arising CD25+CD4+ T cell receptors. Immunity21, 267–277 (2004). ArticleCASPubMed Google Scholar
Izcue, A., Coombes, J. L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev.212, 256–271 (2006). ArticleCASPubMed Google Scholar
Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev.212, 28–50 (2006). ArticleCASPubMed Google Scholar
Chen, W. et al. Conversion of peripheral CD4+CD25−T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198, 1875–1886 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science317, 256–260 (2007). ArticleCASPubMed Google Scholar
Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med.204, 1757–1764 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med.204, 1775–1785 (2007). ArticleCASPubMedPubMed Central Google Scholar
Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med.204, 1765–1774 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schambach, F., Schupp, M., Lazar, M. A. & Reiner, S. L. Activation of retinoic acid receptor-α favours regulatory T cell induction at the expense of IL-17-secreting T helper cell differentiation. Eur. J. Immunol.37, 2396–2399 (2007). ArticleCASPubMed Google Scholar
Kang, S. G., Lim, H. W., Andrisani, O. M., Broxmeyer, H. E. & Kim, C. H. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J. Immunol.179, 3724–3733 (2007). ArticleCASPubMed Google Scholar
Matsumura, Y. et al. Selective expansion of Foxp3-positive regulatory T cells and immunosuppression by suppressors of cytokine signaling 3-deficient dendritic cells. J. Immunol.179, 2170–2179 (2007). ArticleCASPubMed Google Scholar
Pyzik, M. & Piccirillo, C. A. TGF-β1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. J. Leukoc. Biol.82, 335–346 (2007). ArticleCASPubMed Google Scholar
Wei, J. et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA104, 18169–18174 (2007). ArticleCASPubMedPubMed Central Google Scholar
Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity21, 589–601 (2004). ArticleCASPubMed Google Scholar
Bluestone, J. A. & Abbas, A. K. Natural versus adaptive regulatory T cells. Nature Rev. Immunol.3, 253–257 (2003). ArticleCAS Google Scholar
Liu, V. C. et al. Tumor evasion of the immune system by converting CD4+CD25− T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol.178, 2883–2892 (2007). ArticleCASPubMed Google Scholar