Organ-specific features of natural killer cells (original) (raw)
Shi, F.-D. & Ransohoff, R. M. in Natural Killer Cells (eds Lotze, M. T. & Thomson, A. W.) 373–383 (Academic Press, Maryland Heights, 2010). Book Google Scholar
Shi, F. D. & Van Kaer, L. Reciprocal regulation between natural killer cells and autoreactive T cells. Nature Rev. Immunol.6, 751–760 (2006). ArticleCAS Google Scholar
French, A. R. & Yokoyama, W. M. Natural killer cells and autoimmunity. Arthritis Res. Ther.6, 8–14 (2004). ArticleCASPubMed Google Scholar
Flodstrom-Tullberg, M., Bryceson, Y. T., Shi, F. D., Hoglund, P. & Ljunggren, H. G. Natural killer cells in human autoimmunity. Curr. Opin. Immunol.21, 634–640 (2009). ArticleCASPubMed Google Scholar
Poirot, L., Benoist, C. & Mathis, D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl Acad. Sci. USA101, 8102–8107 (2004). ArticleCASPubMedPubMed Central Google Scholar
Feuerer, M., Shen, Y., Littman, D. R., Benoist, C. & Mathis, D. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity31, 654–664 (2009). This study identifies the kinetics of NK cell recruitment to the pancreas in relation to TRegcells, and suggests that, in the absence of TRegcells, NK cells contribute to the destruction of islet cells. ArticleCASPubMedPubMed Central Google Scholar
Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity20, 757–767 (2004). ArticleCASPubMed Google Scholar
Gur, C. et al. The activating receptor NKp46 is essential for the development of type 1 diabetes. Nature Immunol.11, 121–128 (2010). ArticleCAS Google Scholar
Zhang, B., Yamamura, T., Kondo, T., Fujiwara, M. & Tabira, T. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med.186, 1677–1687 (1997). This study demonstrates that removal of NK cells exacerbates the clinical presentation of EAE. ArticleCASPubMedPubMed Central Google Scholar
Huang, D. et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J.20, 896–905 (2006). This study presents evidence that interfering with NK cell homing to the CNS dramatically alters the clinical and pathological presentation of EAE. ArticleCASPubMed Google Scholar
Hao, J. et al. Central nervous system (CNS)-resident natural killer cells suppresses Th17 responses and CNS autoimmune pathology. J. Exp. Med.207, 1907–1921 (2010). This study reveals the mechanisms underlying the role of NK cells in regulating inflammation in the brain and identifies some unique characteristics of NK cells following homing to the brain. ArticleCASPubMedPubMed Central Google Scholar
Hao, J. et al. Interleukin-2/interleukin-2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation. Ann. Neurol.69, 721–734 (2011). Using a human–mouse chimaera model, this study shows that the defective NK cell phenotype in the inflamed CNS can be reversed by IL-2 immune complexes that expand NK cell populations. ArticleCASPubMedPubMed Central Google Scholar
Soderstrom, K. et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc. Natl Acad. Sci. USA107, 13028–13033 (2010). ArticleCASPubMed Google Scholar
Wu, H. J. et al. Inflammatory arthritis can be reined in by CpG-induced DC–NK cell cross talk. J. Exp. Med.204, 1911–1922 (2007). References 13 and 14 reported different functions of NK cells in the spleen and joints in a mouse model of rheumatoid arthritis. Reference 13 further described specific and unique phenotypes of NK cells in the inflamed joint. ArticleCASPubMedPubMed Central Google Scholar
Hoglund, P. & Brodin, P. Current perspectives of natural killer cell education by MHC class I molecules. Nature Rev. Immunol.10, 724–734 (2010). ArticleCAS Google Scholar
Thapa, M., Kuziel, W. A. & Carr, D. J. Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J. Virol.81, 3704–3713 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wald, O. et al. IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J. Immunol.176, 4716–4729 (2006). ArticleCASPubMed Google Scholar
Widney, D. P. et al. CXCR3 and its ligands participate in the host response to Bordetella bronchiseptica infection of the mouse respiratory tract but are not required for clearance of bacteria from the lung. Infect. Immun.73, 485–493 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liu, L. et al. Severe disease, unaltered leukocyte migration, and reduced IFN-γ production in CXCR3−/− mice with experimental autoimmune encephalomyelitis. J. Immunol.176, 4399–4409 (2006). ArticleCASPubMed Google Scholar
Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest.117, 185–194 (2007). ArticleCASPubMedPubMed Central Google Scholar
Morrison, B. E., Park, S. J., Mooney, J. M. & Mehrad, B. Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J. Clin. Invest.112, 1862–1870 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stiles, L. N., Hardison, J. L., Schaumburg, C. S., Whitman, L. M. & Lane, T. E. T cell antiviral effector function is not dependent on CXCL10 following murine coronavirus infection. J. Immunol.177, 8372–8380 (2006). ArticleCASPubMed Google Scholar
Yu, Y. R. et al. Defective antitumor responses in CX3CR1-deficient mice. Int. J. Cancer.121, 316–322 (2007). ArticleCASPubMed Google Scholar
Hamann, I. et al. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology133, 62–73 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hokeness, K. L., Kuziel, W. A., Biron, C. A. & Salazar-Mather, T. P. Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-α/β-induced inflammatory responses and antiviral defense in liver. J. Immunol.174, 1549–1556 (2005). ArticleCASPubMed Google Scholar
Salazar-Mather, T. P., Orange, J. S. & Biron, C. A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med.187, 1–14 (1998). This study reveals chemokine-guided recruitment of NK cells to the liver during MCMV infection. ArticleCASPubMedPubMed Central Google Scholar
Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nature Rev. Immunol.10, 554–567 (2010). ArticleCAS Google Scholar
Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nature Rev. Immunol.9, 568–580 (2009). ArticleCAS Google Scholar
Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol.22, 633–640 (2001). ArticleCASPubMed Google Scholar
Fauriat, C., Long, E. O., Ljunggren, H. G. & Bryceson, Y. T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood115, 2167–2176 (2010). ArticleCASPubMedPubMed Central Google Scholar
Romagnani, C. et al. CD56brightCD16− killer Ig-like receptor− NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J. Immunol.178, 4947–4955 (2007). ArticleCASPubMed Google Scholar
Chan, A. et al. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J. Immunol.179, 89–94 (2007). ArticleCASPubMed Google Scholar
Bjorkstrom, N. K. et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood116, 3853–3864 (2010). A detailed study on the terminal differentiation of CD56lowNK cells. ArticleCASPubMed Google Scholar
Strowig, T., Brilot, F. & Munz, C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J. Immunol.180, 7785–7791 (2008). ArticleCASPubMed Google Scholar
Ferlazzo, G. et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol.33, 306–313 (2003). ArticleCASPubMed Google Scholar
Yu, Y. et al. Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J. Immunol.166, 1590–1600 (2001). ArticleCASPubMed Google Scholar
Hayakawa, Y. & Smyth, M. J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol.176, 1517–1524 (2006). ArticleCASPubMed Google Scholar
Lanier, L. L. Evolutionary struggles between NK cells and viruses. Nature Rev. Immunol.8, 259–268 (2008). ArticleCAS Google Scholar
Krueger, P. D., Lassen, M. G., Qiao, H. & Hahn, Y. S. Regulation of NK cell repertoire and function in the liver. Crit. Rev. Immunol.31, 43–52 (2011). ArticleCASPubMedPubMed Central Google Scholar
McIntyre, K. W. & Welsh, R. M. Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection. J. Exp. Med.164, 1667–1681 (1986). ArticleCASPubMed Google Scholar
Lassen, M. G., Lukens, J. R., Dolina, J. S., Brown, M. G. & Hahn, Y. S. Intrahepatic IL-10 maintains NKG2A+Ly49− liver NK cells in a functionally hyporesponsive state. J. Immunol.184, 2693–2701 (2010). ArticleCASPubMed Google Scholar
Bjorkstrom, N. K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med.208, 13–21 (2011). ArticleCASPubMedPubMed Central Google Scholar
O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol.7, 507–516 (2006). ArticleCAS Google Scholar
Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature Immunol.11, 1127–1135 (2010). ArticleCAS Google Scholar
Jinushi, M. et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology120, 73–82 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jiang, W., Sun, R., Zhou, R., Wei, H. & Tian, Z. TLR-9 activation aggravates concanavalin A-induced hepatitis via promoting accumulation and activation of liver CD4+ NKT cells. J. Immunol.182, 3768–3774 (2009). ArticleCASPubMed Google Scholar
Hajishengallis, G. & Lambris, J. D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol.31, 154–163 (2010). ArticleCASPubMedPubMed Central Google Scholar
Roy, S. et al. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J. Immunol.180, 1729–1736 (2008). ArticleCASPubMed Google Scholar
Knolle, P. et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J. Hepatol.22, 226–229 (1995). ArticleCASPubMed Google Scholar
Jinushi, M. et al. Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection. J. Immunol.173, 6072–6081 (2004). ArticleCASPubMed Google Scholar
Nattermann, J. et al. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Gut55, 869–877 (2006). One of the first descriptions of NK cell phenotype in chronic liver infection. ArticleCASPubMedPubMed Central Google Scholar
Golden-Mason, L., Cox, A. L., Randall, J. A., Cheng, L. & Rosen, H. R. Increased natural killer cell cytotoxicity and NKp30 expression protects against hepatitis C virus infection in high-risk individuals and inhibits replication in vitro. Hepatology52, 1581–1589 (2010). ArticleCASPubMed Google Scholar
Stegmann, K. A. et al. Interferon-α-induced TRAIL on natural killer cells is associated with control of hepatitis C virus infection. Gastroenterology138, 1885–1897 (2010). ArticleCASPubMed Google Scholar
Ebert, L. M., Meuter, S. & Moser, B. Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J. Immunol.176, 4331–4336 (2006). ArticleCASPubMed Google Scholar
Ottaviani, C. et al. CD56brightCD16− NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur. J. Immunol.36, 118–128 (2006). ArticleCASPubMed Google Scholar
Small, C. L. et al. NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung. J. Immunol.180, 5558–5568 (2008). ArticleCASPubMed Google Scholar
Reynders, A. et al. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt− lymphoid cells. EMBO J.30, 2934–2947 (2011). ArticleCASPubMedPubMed Central Google Scholar
Halim, T. Y. F. & Fumio, T. NK cell development from a novel progenitor found in the murine lung. J. Immunol.182, 138.10 (2009). Google Scholar
Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity33, 736–751 (2010). One of a series of recent studies describing features of new subsets of innate lymphocytes other than classical NK cells and NKT cells. ArticleCASPubMedPubMed Central Google Scholar
Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Rev. Immunol.10, 131–144 (2010). ArticleCAS Google Scholar
Guo, H. & Topham, D. J. Interleukin-22 (IL-22) production by pulmonary natural killer cells and the potential role of IL-22 during primary influenza virus infection. J. Virol.84, 7750–7759 (2010). ArticleCASPubMedPubMed Central Google Scholar
Wilson, M. S. et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J. Immunol.184, 4378–4390 (2010). ArticleCASPubMed Google Scholar
Moffett, A. & Loke, C. Immunology of placentation in eutherian mammals. Nature Rev. Immunol.6, 584–594 (2006). ArticleCAS Google Scholar
Colucci, F., Boulenouar, S., Kieckbusch, J. & Moffett, A. How does variability of immune system genes affect placentation? Placenta32, 39–45 (2011). ArticleCAS Google Scholar
Croy, B. A., van den Heuvel, M. J., Borzychowski, A. M. & Tayade, C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol. Rev.214, 161–185 (2006). ArticleCASPubMed Google Scholar
Huntington, N. D., Vosshenrich, C. A. & Di Santo, J. P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nature Rev. Immunol.9, 703–714 (2007). ArticleCAS Google Scholar
Moffett-King, A. Natural killer cells and pregnancy. Nature Rev. Immunol.9, 656–663 (2002). ArticleCAS Google Scholar
Yadi, H. et al. Unique receptor repertoire in mouse uterine NK cells. J. Immunol.181, 6140–6147 (2008). ArticleCASPubMed Google Scholar
Male, V. et al. Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. J. Immunol.185, 3913–3918 (2010). ArticleCASPubMed Google Scholar
Ashkar, A. A., Di Santo, J. P. & Croy, B. A. Interferon γ contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J. Exp. Med.192, 259–270 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nature Med.12, 1065–1074 (2006). This study describes the role of host NK cells in regulating pregnancy through interactions with fetal trophoblast cells. ArticleCASPubMed Google Scholar
Sharkey, A. M. et al. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J. Immunol.181, 39–46 (2008). ArticleCASPubMed Google Scholar
Keskin, D. B. et al. TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16− NK cells with similarities to decidual NK cells. Proc. Natl Acad. Sci. USA104, 3378–3383 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hanna, J. et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16− human natural killer cells. Blood102, 1569–1577 (2003). ArticleCASPubMed Google Scholar
Hiby, S. E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med.200, 957–965 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hiby, S. E. et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Invest.120, 4102–4110 (2010). An elegant study on the role of KIRs in controlling the outcome of human pregnancy. ArticleCASPubMedPubMed Central Google Scholar
Brauner, H. et al. Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice. J. Immunol.184, 2272–2280 (2010). This study comprehensively analysed NK cell immune phenotypes in the pancreas during successive stages of diabetes in NOD mice. ArticleCASPubMed Google Scholar
Alba, A. et al. Natural killer cells are required for accelerated type 1 diabetes driven by interferon-β. Clin. Exp. Immunol.151, 467–475 (2008). ArticleCASPubMedPubMed Central Google Scholar
Liu, R. et al. Autoreactive T cells mediate NK cell degeneration in autoimmune disease. J. Immunol.176, 5247–5254 (2006). ArticleCASPubMed Google Scholar
Ansari, M. J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med.198, 63–69 (2003). ArticleCASPubMedPubMed Central Google Scholar
Flodstrom, M. et al. Target cell defense prevents the development of diabetes after viral infection. Nature Immunol.3, 373–382 (2002). ArticleCAS Google Scholar
Lee, I. F., Qin, H., Trudeau, J., Dutz, J. & Tan, R. Regulation of autoimmune diabetes by complete Freund's adjuvant is mediated by NK cells. J. Immunol.172, 937–942 (2004). ArticleCASPubMed Google Scholar
Beilke, J. N., Kuhl, N. R., Van Kaer, L. & Gill, R. G. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nature Med.11, 1059–1065 (2005). ArticleCASPubMed Google Scholar
Tak, P. P. et al. Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum.37, 1735–1743 (1994). ArticleCASPubMed Google Scholar
Mack, M. et al. Predominance of mononuclear cells expressing the chemokine receptor CCR5 in synovial effusions of patients with different forms of arthritis. Arthritis Rheum.42, 981–988 (1999). ArticleCASPubMed Google Scholar
Iwamoto, T., Okamoto, H., Toyama, Y. & Momohara, S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J.275, 4448–4455 (2008). ArticleCASPubMed Google Scholar
Dalbeth, N. et al. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J. Immunol.173, 6418–6426 (2004). ArticleCASPubMed Google Scholar
Romas, E., Gillespie, M. T. & Martin, T. J. Involvement of receptor activator of NFκB ligand and tumor necrosis factor-α in bone destruction in rheumatoid arthritis. Bone30, 340–346 (2002). ArticleCASPubMed Google Scholar
Lubberts, E. et al. Increase in expression of receptor activator of nuclear factor κB at sites of bone erosion correlates with progression of inflammation in evolving collagen-induced arthritis. Arthritis Rheum.46, 3055–3064 (2002). ArticleCASPubMed Google Scholar
Geusens, P. P. et al. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum.54, 1772–1777 (2006). ArticleCASPubMed Google Scholar
Redzic, Z. Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS8, 3 (2011). ArticlePubMedPubMed Central Google Scholar
Trifilo, M. J. et al. CXC chemokine ligand 10 controls viral infection in the central nervous system: evidence for a role in innate immune response through recruitment and activation of natural killer cells. J. Virol.78, 585–594 (2004). ArticleCASPubMedPubMed Central Google Scholar
Alsharifi, M. et al. NK cell-mediated immunopathology during an acute viral infection of the CNS. Eur. J. Immunol.36, 887–896 (2006). ArticleCASPubMed Google Scholar
Hayashi, T. et al. Critical roles of NK and CD8+ T cells in central nervous system listeriosis. J. Immunol.182, 6360–6368 (2009). ArticleCASPubMed Google Scholar
Alizadeh, D. et al. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy. Clin. Cancer Res.16, 3399–3408 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lunemann, A. et al. Human NK cells kill resting but not activated microglia via NKG2D- and NKp46-mediated recognition. J. Immunol.181, 6170–6177 (2008). ArticleCASPubMed Google Scholar
Ponomarev, E. D. et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol.178, 39–48 (2007). ArticleCASPubMed Google Scholar
Biber, K., Neumann, H., Inoue, K. & Boddeke, H. W. Neuronal 'on' and 'off' signals control microglia. Trends Neurosci.30, 596–602 (2007). ArticleCASPubMed Google Scholar
Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci.10, 1387–1394 (2007). ArticleCASPubMed Google Scholar
Farina, C., Aloisi, F. & Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol.28, 138–145 (2007). ArticleCASPubMed Google Scholar
Ponomarev, E. D., Shriver, L. P., Maresz, K. & Dittel, B. N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res.81, 374–389 (2005). References 106 and 110 provide evidence that microglia can sense inflammatory signals from the periphery and become activated prior to T cell arrival into the brain. ArticleCASPubMed Google Scholar
Bhat, R. & Steinman, L. Innate and adaptive autoimmunity directed to the central nervous system. Neuron64, 123–132 (2009). ArticleCASPubMed Google Scholar
Rose, J. W., Watt, H. E., White, A. T. & Carlson, N. G. Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody. Ann. Neurol.56, 864–867 (2004). ArticleCASPubMed Google Scholar
Rose, J. W. et al. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology69, 785–789 (2007). ArticleCASPubMed Google Scholar
Bielekova, B. et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA103, 5941–5946 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bielekova, B. et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch. Neurol.66, 483–489 (2009). ArticlePubMedPubMed Central Google Scholar
Vandenbark, A. A. et al. Interferon-β-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol.215, 125–128 (2009). ArticleCASPubMed Google Scholar
Sand, K. L., Knudsen, E., Rolin, J., Al-Falahi, Y. & Maghazachi, A. A. Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell. Mol. Life Sci.66, 1446–1456 (2009). References 116 and 117 suggest that IFNs and glatiramer acetate may achieve their therapeutic efficacy, at least in part, by activating NK cells. ArticleCASPubMed Google Scholar
Paya, C. V., Patick, A. K., Leibson, P. J. & Rodriguez, M. Role of natural killer cells as immune effectors in encephalitis and demyelination induced by Theiler's virus. J. Immunol.143, 95–102 (1989). CASPubMed Google Scholar
Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature462, 94–98 (2009). ArticleCASPubMed Google Scholar
Fan, Z. et al. In vivo tracking of 'color-coded' effector, natural and induced regulatory T cells in the allograft response. Nature Med.16, 718–722 (2010). ArticleCASPubMed Google Scholar
Siffrin, V. et al. In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity33, 424–436 (2010). ArticleCASPubMed Google Scholar
Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med.203, 619–631 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chen, Q., Khoury, M. & Chen, J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage in humanized mice. Proc. Natl Acad. Sci. USA106, 21783–21788 (2009). ArticleCASPubMedPubMed Central Google Scholar
Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol.12, 21–27 (2011). ArticleCAS Google Scholar
Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunol.8, 1337–1344 (2007). ArticleCAS Google Scholar
Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature464, 1293–1300 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sternberg, E. M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nature Rev. Immunol.6, 318–328 (2006). ArticleCAS Google Scholar