Wrzesinski, S. H., Wan, Y. Y. & Flavell, R. A. Transforming growth factor-β and the immune response: implications for anticancer therapy. Clin. Cancer Res.13, 5262–5270 (2007). ArticleCASPubMed Google Scholar
Tian, M. & Schiemann, W. P. The TGF-β paradox in human cancer: an update. Future Oncol.5, 259–271 (2009). ArticleCASPubMed Google Scholar
Bierie, B. & Moses, H. L. Transforming growth factor β (TGF-β) and inflammation in cancer. Cytokine Growth Factor Rev.21, 49–59 (2010). ArticleCASPubMed Google Scholar
Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol.24, 99–146 (2006). ArticleCASPubMed Google Scholar
Zou, W. & Restifo, N. P. TH17 cells in tumour immunity and immunotherapy. Nature Rev. Immunol.10, 248–256 (2010). ArticleCAS Google Scholar
Yang, Q., Goding, S. R., Hokland, M. E. & Basse, P. H. Antitumor activity of NK cells. Immunol. Res.36, 13–25 (2006). ArticlePubMed Google Scholar
Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-β controls T helper type 1 cell development through regulation of natural killer cell interferon-γ. Nature Immunol.6, 600–607 (2005). ArticleCAS Google Scholar
Rook, A. H. et al. Effects of transforming growth factor β on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol.136, 3916–3920 (1986). CASPubMed Google Scholar
Wahl, S. M., Wen, J. & Moutsopoulos, N. M. The kiss of death: interrupted by NK-cell close encounters of another kind. Trends Immunol.27, 161–164 (2006). ArticleCASPubMed Google Scholar
Trotta, R. et al. TGF-β utilizes SMAD3 to inhibit CD16-mediated IFN-γ production and antibody-dependent cellular cytotoxicity in human NK cells. J. Immunol.181, 3784–3792 (2008). ArticleCASPubMed Google Scholar
Lanier, L. L. Up on the tightrope: natural killer cell activation and inhibition. Nature Immunol.9, 495–502 (2008). ArticleCAS Google Scholar
Castriconi, R. et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl Acad. Sci. USA100, 4120–4125 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Crane, C. A. et al. TGF-β downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro. Oncol.12, 7–13 (2010). ArticleCASPubMed Google Scholar
Lee, J.-C., Lee, K.-M., Kim, D.-W. & Heo, D. S. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol.172, 7335–7340 (2004). ArticleCASPubMed Google Scholar
Kopp, H. G., Placke, T. & Salih, H. R. Platelet-derived transforming growth factor-β down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res.69, 7775–7783 (2009). ArticleCASPubMed Google Scholar
Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J. Immunol.182, 240–249 (2009). ArticleCASPubMed Google Scholar
Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature449, 419–426 (2007). ArticleCASPubMed Google Scholar
Ferlazzo, G. & Munz, C. Dendritic cell interactions with NK cells from different tissues. J. Clin. Immunol.29, 265–273 (2009). ArticleCASPubMed Google Scholar
Dhodapkar, M. V., Dhodapkar, K. M. & Palucka, A. K. Interactions of tumor cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ.15, 39–50 (2008). ArticleCASPubMed Google Scholar
Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell106, 255–258 (2001). ArticleCASPubMed Google Scholar
Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med.194, 769–779 (2001). ArticleCASPubMed CentralPubMed Google Scholar
Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol.21, 685–711 (2003). ArticleCASPubMed Google Scholar
Yamazaki, S. & Steinman, R. M. Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J. Dermatol. Sci.54, 69–75 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Kortylewski, M. et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell15, 114–123 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Ito, M. et al. Tumor-derived TGFβ-1 induces dendritic cell apoptosis in the sentinel lymph node. J. Immunol.176, 5637–5643 (2006). ArticleCASPubMed Google Scholar
Weber, F. et al. Transforming growth factor-β1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system. Cancer Immunol. Immunother.54, 898–906 (2005). ArticleCASPubMed Google Scholar
Halliday, G. M. & Le, S. Transforming growth factor-β produced by progressor tumors inhibits, while IL-10 produced by regressor tumors enhances, Langerhans cell migration from skin. Int. Immunol.13, 1147–1154 (2001). ArticleCASPubMed Google Scholar
Bekeredjian-Ding, I. et al. Tumour-derived prostaglandin E and transforming growth factor-β synergize to inhibit plasmacytoid dendritic cell-derived interferon-α. Immunology128, 439–450 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Zhang, X. et al. CD4−8− dendritic cells prime CD4+ T regulatory 1 cells to suppress antitumor immunity. J. Immunol.175, 2931–2937 (2005). ArticleCASPubMed Google Scholar
Roncarolo, M. G., Levings, M. K. & Traversari, C. Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med.193, F5–F9 (2001). ArticleCASPubMed CentralPubMed Google Scholar
Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med.198, 235–247 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R. M. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med.199, 1467–1477 (2004). ArticleCASPubMed CentralPubMed Google Scholar
Banerjee, D. K., Dhodapkar, M. V., Matayeva, E., Steinman, R. M. & Dhodapkar, K. M. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood108, 2655–2661 (2006). ArticleCASPubMed CentralPubMed Google Scholar
Chung, D. J. et al. Indoleamine 2, 3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood114, 555–563 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Luo, X. et al. Dendritic cells with TGF-β1 differentiate naive CD4+CD25− T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA104, 2821–2826 (2007). ArticleCASPubMedPubMed Central Google Scholar
Levings, M. K., Bacchetta, R., Schulz, U. & Roncarolo, M. G. The role of IL-10 and TGF-β in the differentiation and effector function of T regulatory cells. Int. Arch. Allergy Immunol.129, 263–276 (2002). ArticleCASPubMed Google Scholar
Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med.202, 919–929 (2005). ArticleCASPubMed CentralPubMed Google Scholar
Liu, V. C. et al. Tumor evasion of the immune system by converting CD4+CD25− T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol.178, 2883–2892 (2007). ArticleCASPubMed Google Scholar
Yamazaki, S. et al. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol.181, 6923–6933 (2008). ArticleCASPubMed Google Scholar
Dumitriu, I. E., Dunbar, D. R., Howie, S. E., Sethi, T. & Gregory, C. D. Human dendritic cells produce TGF-β 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol.182, 2795–2807 (2009). ArticleCASPubMed Google Scholar
Mantovani, A., Sica, A., Allavena, P., Garlanda, C. & Locati, M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum. Immunol.70, 325–330 (2009). ArticleCASPubMed Google Scholar
Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol.27, 451–483 (2009). ArticleCASPubMed Google Scholar
Sica, A. et al. Macrophage polarization in tumour progression. Semin. Cancer Biol.18, 349–355 (2008). ArticleCASPubMed Google Scholar
Byrne, S. N., Knox, M. C. & Halliday, G. M. TGFβ is responsible for skin tumour infiltration by macrophages enabling the tumours to escape immune destruction. Immunol. Cell Biol.86, 92–97 (2008). ArticleCASPubMed Google Scholar
Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood107, 2112–2122 (2006). ArticleCASPubMed Google Scholar
Saccani, A. et al. p50 nuclear factor-κB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res.66, 11432–11440 (2006). ArticleCASPubMed Google Scholar
Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl Acad. Sci. USA106, 14978–14983 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol.22, 231–237 (2010). ArticleCASPubMed Google Scholar
Torroella-Kouri, M. et al. Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res.69, 4800–4809 (2009). This study shows that TGFβ and prostaglandin E2individually and additively downregulate NF-κB and C/EBP expression in a unique less-differentiated macrophage subpopulation. ArticleCASPubMed Google Scholar
Umemura, N. et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J. Leukoc. Biol.83, 1136–1144 (2008). ArticleCASPubMed Google Scholar
Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R. K. & Kitani, A. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nature Med.12, 99–106 (2006). ArticleCASPubMed Google Scholar
Gratchev, A. et al. Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J. Immunol.180, 6553–6565 (2008). ArticleCASPubMed Google Scholar
Allen, S. S. et al. Altered inflammatory responses following transforming growth factor-β neutralization in experimental guinea pig tuberculous pleurisy. Tuberculosis (Edinb.)88, 430–436 (2008). ArticleCAS Google Scholar
Smith, W. B. et al. Transforming growth factor-β1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J. Immunol.157, 360–368 (1996). CASPubMed Google Scholar
Shen, L. et al. Inhibition of human neutrophil degranulation by transforming growth factor-β1. Clin. Exp. Immunol.149, 155–161 (2007). ArticleCASPubMed CentralPubMed Google Scholar
Di Carlo, E. et al. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood97, 339–345 (2001). ArticleCASPubMed Google Scholar
Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell16, 183–194 (2009). This study provides the first evidence that TGFβ controls pro-tumour versus antitumour immune responses by polarizing neutrophil subpopulations to N1 or N2 phenotypes in the tumour microenvironment. ArticleCASPubMed CentralPubMed Google Scholar
Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA103, 12493–12498 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pekarek, L. A., Starr, B. A., Toledano, A. Y. & Schreiber, H. Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med.181, 435–440 (1995). ArticleCASPubMed Google Scholar
Tazawa, H. et al. Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. Am. J. Pathol.163, 2221–2232 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Colombo, M. P., Modesti, A., Parmiani, G. & Forni, G. Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte–T-lymphocyte cross-talk. Cancer Res.52, 4853–4857 (1992). CASPubMed Google Scholar
Hicks, A. M. et al. Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc. Natl Acad. Sci. USA103, 7753–7758 (2006). ArticleCASPubMedPubMed Central Google Scholar
Stoppacciaro, A. et al. Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte–T cell cooperation and T cell-produced interferon γ. J. Exp. Med.178, 151–161 (1993). ArticleCASPubMed Google Scholar
Schumacher, K., Haensch, W., Roefzaad, C. & Schlag, P. M. Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res.61, 3932–3936 (2001). CASPubMed Google Scholar
Nakano, O. et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res.61, 5132–5136 (2001). CASPubMed Google Scholar
Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med.348, 203–213 (2003). CASPubMed Google Scholar
Gao, Q. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol.25, 2586–2593 (2007). ArticlePubMed Google Scholar
Thomas, D. A. & Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell8, 369–380 (2005). ArticleCASPubMed Google Scholar
Zhang, Q. et al. Blockade of transforming growth factor-β signaling in tumor-reactive CD8+ T cells activates the antitumor immune response cycle. Mol. Cancer Ther.5, 1733–1743 (2006). ArticleCASPubMed Google Scholar
Franciszkiewicz, K. et al. Intratumoral induction of CD103 triggers tumor-specific CTL function and CCR5-dependent T-cell retention. Cancer Res.69, 6249–6255 (2009). ArticleCASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity12, 171–181 (2000). ArticleCASPubMed Google Scholar
Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med.7, 1118–1122 (2001). ArticleCASPubMed Google Scholar
Zhang, Q. et al. Adoptive transfer of tumor-reactive transforming growth factor-β-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res.65, 1761–1769 (2005). ArticleCASPubMed Google Scholar
Wang, L. et al. Immunotherapy for human renal cell carcinoma by adoptive transfer of autologous transforming growth factor β-insensitive CD8+ T cells. Clin. Cancer Res.16, 164–173 (2010). ArticleCASPubMed Google Scholar
Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nature Immunol.1, 515–520 (2000). ArticleCAS Google Scholar
Terabe, M. et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med.198, 1741–1752 (2003). ArticleCASPubMed CentralPubMed Google Scholar
Nam, J. S. et al. An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res.68, 3835–3843 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Wallace, A. et al. Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin. Cancer Res.14, 3966–3974 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Takaku, S. et al. Blockade of TGF-β enhances tumor vaccine efficacy mediated by CD8+ T cells. Int. J. Cancer126, 1666–1674 (2010). CASPubMed CentralPubMed Google Scholar
Terabe, M. et al. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody. Clin. Cancer Res.15, 6560–6569 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Ueda, R. et al. Systemic inhibition of transforming growth factor-β in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin. Cancer Res.15, 6551–6559 (2009). References 82–84 show that the combination of a TGFβ-specific antibody with a vaccine results in a synergistic improvement in the inhibition of tumour growth that is mediated by increased number and activity of CD8+ T cells. ArticleCASPubMed CentralPubMed Google Scholar
Sanjabi, S., Mosaheb, M. M. & Flavell, R. A. Opposing effects of TGF-β and IL-15 cytokines control the number of short-lived effector CD8+ T cells. Immunity31, 131–144 (2009). This study shows the ability of TGFβ to promote apoptosis of effector CD8+ T cells under immunogenic conditions, such as vaccination. ArticleCASPubMed CentralPubMed Google Scholar
Ahmadzadeh, M. & Rosenberg, S. A. TGF-β1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J. Immunol.174, 5215–5223 (2005). ArticleCASPubMed Google Scholar
di Bari, M. G. et al. TGF-β modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression. Cancer Immunol. Immunother.58, 1809–1818 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Nam, J. S. et al. Transforming growth factor β subverts the immune system into directly promoting tumor growth through interleukin-17. Cancer Res.68, 3915–3923 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Hinrichs, C. S. et al. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood114, 596–599 (2009). This study shows that IL-17-producing CD8+ T cells mediate tumour regression and persist longer than normal CD8+ T cells after adoptive transfer in tumour-bearing mice.
Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity31, 787–798 (2009). References 90 and 91 provide compelling evidence comparing the therapeutic potential of adoptively transferred THcell subpopulations and show that TH17-polarized cells are the most effective in tumour eradication. ArticleCASPubMed CentralPubMed Google Scholar
Li, X. F. et al. Transforming growth factor-β (TGF-β)-mediated immunosuppression in the tumor-bearing state: enhanced production of TGF-β and a progressive increase in TGF-β susceptibility of anti-tumor CD4+ T cell function. Jpn. J. Cancer Res.84, 315–325 (1993). ArticleCASPubMed CentralPubMed Google Scholar
Maeda, H. & Shiraishi, A. TGF-β contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J. Immunol.156, 73–78 (1996). CASPubMed Google Scholar
Knutson, K. L. & Disis, M. L. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol. Immunother.54, 721–728 (2005). ArticleCASPubMed Google Scholar
Gao, F. G. et al. Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res.62, 6438–6441 (2002). CASPubMed Google Scholar
Perez-Diez, A. et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood109, 5346–5354 (2007). This report shows the potential of CD4+ T cells for tumour elimination even in the absence of CD8+ T cells and independent of MHC class II expression by tumour cells. ArticleCASPubMed CentralPubMed Google Scholar
Martin-Orozco, N. & Dong, C. The IL-17/IL-23 axis of inflammation in cancer: friend or foe? Curr. Opin. Invest. Drugs10, 543–549 (2009). CAS Google Scholar
Murugaiyan, G. & Saha, B. Protumor vs antitumor functions of IL-17. J. Immunol.183, 4169–4175 (2009). ArticleCASPubMed Google Scholar
Miyahara, Y. et al. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc. Natl Acad. Sci. USA105, 15505–15510 (2008). ArticleCASPubMedPubMed Central Google Scholar
Su, X. et al. Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J. Immunol.184, 1630–1641 (2010). ArticleCASPubMed Google Scholar
Nurieva, R., Yang, X. O., Chung, Y. & Dong, C. Cutting edge: in vitro generated Th17 cells maintain their cytokine expression program in normal but not lymphopenic hosts. J. Immunol.182, 2565–2568 (2009). ArticleCASPubMed Google Scholar
Xie, Y. et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med.207, 651–667 (2010). This report shows for the first time the potential use of naive CD4+ T cells in transfer experiments to induce potent antitumour immunityin vivo . ArticleCASPubMed CentralPubMed Google Scholar
Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med.207, 637–650 (2010). ArticleCASPubMed CentralPubMed Google Scholar
Kryczek, I. et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J. Immunol.178, 6730–6733 (2007). ArticleCASPubMed Google Scholar
Pellegrini, M. et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nature Med.15, 528–536 (2009). ArticleCASPubMed Google Scholar
Curotto de Lafaille, M. A. & Lafaille, J. J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity30, 626–635 (2009). ArticleCASPubMed Google Scholar
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med.10, 942–949 (2004). ArticleCASPubMed Google Scholar
Merlo, A. et al. FOXP3 expression and overall survival in breast cancer. J. Clin. Oncol.27, 1746–1752 (2009). ArticleCASPubMed Google Scholar
Moo-Young, T. A. et al. Tumor-derived TGF-β mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer. J. Immunother.32, 12–21 (2009). In this study, TGFβ derived from the tumour promotesin situTRegcell differentiation, showing a mechanism of immune surveillance. ArticleCASPubMed Google Scholar
Solinas, G., Germano, G., Mantovani, A. & Allavena, P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J. Leukoc. Biol.86, 1065–1073 (2009). ArticleCASPubMed Google Scholar
Han, Y., Guo, Q., Zhang, M., Chen, Z. & Cao, X. CD69+ CD4+ CD25− T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-β1. J. Immunol.182, 111–120 (2009). ArticleCASPubMed Google Scholar
Chen, W. et al. Conversion of Peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198, 1875–1886 (2003). CASPubMed CentralPubMed Google Scholar
Fantini, M. C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol.172, 5149–5153 (2004). ArticleCASPubMed Google Scholar
Petrausch, U. et al. Disruption of TGF-β signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity. J. Immunol.183, 3682–3689 (2009). ArticleCASPubMed Google Scholar
Kapp, J. A. & Bucy, R. P. CD8+ suppressor T cells resurrected. Hum. Immunol.69, 715–720 (2008). ArticleCASPubMed Google Scholar
Jarnicki, A. G., Lysaght, J., Todryk, S. & Mills, K. H. Suppression of antitumor immunity by IL-10 and TGF-β-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J. Immunol.177, 896–904 (2006). ArticleCASPubMed Google Scholar
Shafer-Weaver, K. A. et al. Cutting edge: tumor-specific CD8+ T cells infiltrating prostatic tumors are induced to become suppressor cells. J. Immunol.183, 4848–4852 (2009). ArticleCASPubMed Google Scholar
Chaput, N. et al. Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut58, 520–529 (2009). ArticleCASPubMed Google Scholar
Kiniwa, Y. et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res.13, 6947–6958 (2007). ArticleCASPubMed Google Scholar
Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Kaer, L. V. NKT cells: what's in a name? Nature Rev. Immunol.4, 231–237 (2004). ArticleCAS Google Scholar
Berzofsky, J. & Terabe, M. A novel immunoregulatory axis of NKT cell subsets regulating tumor immunity. Cancer Immunol. Immunother.57, 1679–1683 (2008). ArticleCASPubMed Google Scholar
van der Vliet, H. J. et al. Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J. Immunol.180, 7287–7293 (2008). ArticleCASPubMed Google Scholar
Calvo-Aller, E. et al. First human dose escalation study in patients with metastatic malignancies to determine safety and pharmacokinetics of LY2157299, a small molecule inhibitor of the transforming growth factor-β receptor I kinase. ASCO Annual Meeting. J. Clin. Oncol. Abstr.26, 14554 (2008). Article Google Scholar
Fakhrai, H. et al. Phase I clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther.13, 1052–1060 (2006). ArticleCASPubMed Google Scholar
Nemunaitis, J. et al. Phase II study of belagenpumatucel-L, a transforming growth factor β-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J. Clin. Oncol.24, 4721–4730 (2006). ArticleCASPubMed Google Scholar
Nemunaitis, J. et al. Phase II trial of belagenpumatucel-L, a TGF-β2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther.16, 620–624 (2009). One of the few recent studies evaluating TGFβ blockade in humans; there are several limitations regarding design of trial and true 'efficacy' of this approach. ArticleCASPubMed Google Scholar
Schlingensiepen, K.-H. et al. Targeted tumor therapy with the TGF-β2 antisense compound AP 12009. Cytokine Growth Factor Rev.17, 129–139 (2006). ArticleCASPubMed Google Scholar
Schlingensiepen, R. et al. Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides15, 94–104 (2005). ArticleCASPubMed Google Scholar
Melero, I., Hervas-Stubbs, S., Glennie, M., Pardoll, D. M. & Chen, L. Immunostimulatory monoclonal antibodies for cancer therapy. Nature Rev. Cancer7, 95–106 (2007). ArticleCAS Google Scholar
O'Garra, A., Stockinger, B. & Veldhoen, M. Differentiation of human TH-17 cells does require TGF-β! Nature Immunol.9, 588–590 (2008). ArticleCAS Google Scholar
Schreiber, T. H., Deyev, V. V., Rosenblatt, J. D. & Podack, E. R. Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res.69, 2026–2033 (2009). ArticleCASPubMed CentralPubMed Google Scholar
Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev.17, 41–58 (2006). ArticleCASPubMed Google Scholar
Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nature Rev. Cancer3, 807–821 (2003). ArticleCAS Google Scholar
Nagaraj, N. S. & Datta, P. K. Targeting the transforming growth factor-β signaling pathway in human cancer. Expert Opin. Investig. Drugs19, 77–91 (2010). ArticleCASPubMed Google Scholar
Wei, S. et al. Tumor-induced immune suppression of in vivo effector T-cell priming is mediated by the B7-H1/PD-1 axis and transforming growth factor β. Cancer Res.68, 5432–5438 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Schlingensiepen, K.-H. et al. The TGF-β1 antisense oligonucleotide AP 11014 for the treatment of non-small cell lung, colorectal and prostate cancer: preclinical studies. J. Clin. Immunol.22, 3132 (2004). Google Scholar
Khaw, P. et al. A phase III study of subconjunctival human anti-transforming growth factor β(2) monoclonal antibody (CAT-152) to prevent scarring after first-time trabeculectomy. Ophthalmology114, 1822–1830 (2007). ArticlePubMed Google Scholar
Benigni, A. et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J. Am. Soc. Nephrol.14, 1816–1824 (2003). ArticleCASPubMed Google Scholar
Morris, J. C. et al. Phase I/II study of GC1008: A human anti-transforming growth factor-β (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma (MM) or renal cell carcinoma (RCC). ASCO Annual Meeting. J. Clin. Oncol. Abstr.26, 9028 (2008). Article Google Scholar
Nam, J.-S. et al. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor β in a mouse model of breast cancer. Cancer Res.66, 6327–6335 (2006). ArticleCASPubMed CentralPubMed Google Scholar
Zhong, Z. et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res.16, 1191–1205 (2010). The newest study evaluating an antibody specific for TGFβRII, which shows antitumour responses against mouse mammary and colon cancer cell lines by increasing CTL and NK cell activity while decreasing the number of TRegcells and MDSCs in mice treated with these antibodies. ArticleCASPubMed Google Scholar
Kano, M. R. et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA104, 3460–3465 (2007). ArticleCASPubMedPubMed Central Google Scholar
Scott Sawyer, J. et al. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4_H_-pyrrolo[1,2-_b_]pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. Bioorg. Med. Chem. Lett.14, 3581–3584 (2004). ArticleCASPubMed Google Scholar
Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol.62, 65–74 (2002). ArticleCASPubMed Google Scholar
Saunier, E. F. & Akhurst, R. J. TGFβ inhibition for cancer therapy. Curr. Cancer Drug Targets.6, 565–578 (2006). ArticleCASPubMed Google Scholar
Hayashi, T. et al. Transforming growth factor β receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin. Cancer Res.10, 7540–7546 (2004). ArticleCASPubMed Google Scholar
Uhl, M. et al. SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res.64, 7954–7961 (2004). ArticleCASPubMed Google Scholar
Ehata, S. et al. Ki26894, a novel transforming growth factor-β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci.98, 127–133 (2007). ArticleCASPubMed Google Scholar
Kim, S. et al. Systemic blockade of transforming growth factor-β signaling augments the efficacy of immunogene therapy. Cancer Res.68, 10247–10256 (2008). Recent evidence of successful combination therapy using TGFβ-blocking reagents. ArticleCASPubMed CentralPubMed Google Scholar
Suzuki, E. et al. A novel small-molecule inhibitor of transforming growth factor β type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res.67, 2351–2359 (2007). ArticleCASPubMed Google Scholar
Qiqi, C., Sang Kyun, L., Bryan, Z. & Hoffmann, F. M. Selective inhibition of TGF-β responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene24, 3864–3874 (2005). ArticleCAS Google Scholar
Llopiz, D. et al. Peptide inhibitors of transforming growth factor-β enhance the efficacy of antitumor immunotherapy. Int. J. Cancer125, 2614–2623 (2009). ArticleCASPubMed Google Scholar
Yang, Y.-A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest.109, 1607–1615 (2002). ArticleCASPubMed CentralPubMed Google Scholar
Fujita, T. et al. Inhibition of transforming growth factor-β-mediated immunosuppression in tumor-draining lymph nodes augments antitumor responses by various immunologic cell types. Cancer Res.69, 5142–5150 (2009). ArticleCASPubMed Google Scholar
Foster, A. E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor. J. Immunother.31, 500–505 (2008). ArticleCASPubMed CentralPubMed Google Scholar
Melisi, D. et al. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer. Ther.7, 829–840 (2008). ArticleCASPubMed CentralPubMed Google Scholar