- Flegal, K. M., Carroll, M. D., Ogden, C. L. & Curtin, L. R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303, 235–241 (2010).
Article CAS PubMed Google Scholar
- Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377, 557–567 (2011).
Article PubMed PubMed Central Google Scholar
- Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211–2219 (2010).
Article CAS PubMed Google Scholar
- Flegal, K. M., Graubard, B. I., Williamson, D. F. & Gail, M. H. Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298, 2028–2037 (2007).
Article CAS PubMed Google Scholar
- Zheng, W. et al. Association between body-mass index and risk of death in more than 1 million Asians. N. Engl. J. Med. 364, 719–729 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Leibel, R. L. Molecular physiology of weight regulation in mice and humans. Int. J. Obes. 32, S98–S108 (2008).
Article CAS Google Scholar
- Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).
Article CAS PubMed Google Scholar
- Olefsky, J. & Glass, C. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 1–28 (2010).
Article CAS Google Scholar
- Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Odegaard, J. I. & Chawla, A. Mechanisms of macrophage activation in obesity-induced insulin resistance. Nature Clin. Pract. Endocrinol. Metab. 4, 619–626 (2008).
Article CAS Google Scholar
- Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Ferrante, A. W. Jr. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J. Intern. Med. 262, 408–414 (2007).
Article CAS PubMed Google Scholar
- Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).
Article CAS PubMed Google Scholar
- Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 271, 665–668 (1996). This was the first evidence that serine phosphorylation of IRS proteins underlies the inhibition of insulin signalling by pro-inflammatory cytokines.
Article CAS PubMed Google Scholar
- Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003). References 15 and 16 provided the initial evidence for an involvement of macrophages in obesity-induced adipose tissue inflammation and insulin resistance.
Article CAS PubMed PubMed Central Google Scholar
- Kahn, B. B. & Flier, J. S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Brown, M. S. & Goldstein, J. L. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 7, 95–96 (2008).
Article CAS PubMed Google Scholar
- Qatanani, M. & Lazar, M. A. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 21, 1443–1455 (2007). An assessment of various cellular pathways and molecular mechanisms that contribute to obesity-associated insulin resistance.
Article CAS PubMed Google Scholar
- Odegaard, J. I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 6, 275–297 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Lumeng, C. N., DelProposto, J. B., Westcott, D. J. & Saltiel, A. R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57, 3239–3246 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007). This paper demonstrates that the adipose tissues of lean and obese mice are preferentially populated by alternatively and classically activated macrophages, respectively.
Article CAS PubMed PubMed Central Google Scholar
- Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007). This was the first demonstration that PPARγ regulates alternative activation of adipose tissue macrophages, which ameliorates obesity-induced insulin resistance.
Article CAS PubMed PubMed Central Google Scholar
- Lumeng, C. N., Deyoung, S. M. & Saltiel, A. R. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am. J. Physiol. Endocrinol. Metab. 292, e166–e174 (2007).
Article CAS PubMed Google Scholar
- Stout, R. D. & Suttles, J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J. Leukoc. Biol. 76, 509–513 (2004).
Article CAS PubMed Google Scholar
- Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S. & Obin, M. S. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes 59, 1171–1181 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Strissel, K. J. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007).
Article CAS PubMed Google Scholar
- Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).
Article CAS PubMed Google Scholar
- Cho, H. J. et al. Induction of dendritic cell-like phenotype in macrophages during foam cell formation. Physiol. Genomics 29, 149–160 (2007).
Article CAS PubMed Google Scholar
- Feng, D. et al. High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60, 2134–2143 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).
Article CAS PubMed Google Scholar
- Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Arkan, M. C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nature Med. 11, 191–198 (2005). This paper shows that IKKβ deficiency in myeloid cells confers protection against obesity-induced insulin resistance, thereby implicating classically activated macrophages in the pathogenesis of metabolic disease.
Article CAS PubMed Google Scholar
- Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6, 386–397 (2007).
Article CAS PubMed Google Scholar
- Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Konner, A. C. & Bruning, J. C. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol. Metab. 22, 16–23 (2011).
Article CAS PubMed Google Scholar
- Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).
CAS PubMed PubMed Central Google Scholar
- Saberi, M. et al. Hematopoietic cell-specific deletion of Toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 10, 419–429 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Poggi, M. et al. C3H/HeJ mice carrying a Toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 50, 1267–1276 (2007).
Article CAS PubMed Google Scholar
- Tsukumo, D. M. et al. Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56, 1986–1998 (2007).
Article CAS PubMed Google Scholar
- Erridge, C. & Samani, N. J. Saturated fatty acids do not directly stimulate Toll-like receptor signaling. Arterioscler. Thromb. Vasc. Biol. 29, 1944–1949 (2009).
Article CAS PubMed Google Scholar
- Hosoi, T., Yokoyama, S., Matsuo, S., Akira, S. & Ozawa, K. Myeloid differentiation factor 88 (MyD88)-deficiency increases risk of diabetes in mice. PLoS ONE 5, e12537 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Vijay-Kumar, M. et al. Loss of function mutation in Toll-like receptor-4 does not offer protection against obesity and insulin resistance induced by a diet high in trans fat in mice. J. Inflamm. 8, 2 (2011). References 43 and 44 describe the paradoxical worsening of metabolic disease in mice lacking TLR4 or MYD88.
Article CAS Google Scholar
- Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol. 5, 953–964 (2005).
Article CAS Google Scholar
- Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).
Article CAS PubMed Google Scholar
- Inouye, K. E. et al. Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 56, 2242–2250 (2007).
Article CAS PubMed Google Scholar
- Kirk, E. A., Sagawa, Z. K., McDonald, T. O., O'Brien, K. D. & Heinecke, J. W. Macrophage chemoattractant protein-1 deficiency fails to restrain macrophage infiltration into adipose tissue. Diabetes 57, 1254–1261 (2008).
Article CAS PubMed Google Scholar
- Chapman, J. et al. Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice. PLoS ONE 5, e13959 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Kiefer, F. W. et al. Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia 54, 2132–2142 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Nomiyama, T. et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J. Clin. Invest. 117, 2877–2888 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Kosteli, A. et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J. Clin. Invest. 120, 3466–3479 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Kurokawa, J. et al. Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue. Proc. Natl Acad. Sci. USA 108, 12072–12077 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Petrilli, V., Dostert, C., Muruve, D. A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).
Article CAS PubMed Google Scholar
- Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 12, 593–605 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Med. 17, 179–188 (2011).
Article CAS PubMed Google Scholar
- Wen, H. et al. Fatty acid-induced NLRP3–ASC inflammasome activation interferes with insulin signaling. Nature Immunol. 12, 408–415 (2011). References 56–58 describe the links between inflammasome activation, obesity-induced inflammation and insulin resistance.
Article CAS Google Scholar
- Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nature Rev. Immunol. 10, 826–837 (2010).
Article CAS Google Scholar
- Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunol. 11, 136–140 (2010).
Article CAS Google Scholar
- Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nature Immunol. 11, 897–904 (2010).
CAS Google Scholar
- De Nardo, D. & Latz, E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 32, 373–379 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Poggi, M. et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler. Thromb. Vasc. Biol. 31, 2251–2260 (2011).
Article CAS PubMed Google Scholar
- Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Med. 15, 914–920 (2009).
Article CAS PubMed Google Scholar
- Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med. 15, 921–929 (2009). References 64 and 65 show the involvement of adaptive immune responses in the modulation of obesity-induced metabolic disease.
Article CAS PubMed Google Scholar
- Gordon, S. Alternative activation of macrophages. Nature Rev. Immunol. 3, 23–35 (2003).
Article CAS Google Scholar
- Evans, R. M., Barish, G. D. & Wang, Y.-X. PPARs and the complex journey to obesity. Nature Med. 10, 355–361 (2004).
Article CAS PubMed Google Scholar
- Chawla, A. Control of macrophage activation and function by PPARs. Circ. Res. 106, 1559–1569 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Glass, C. K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nature Rev. Immunol. 10, 365–376 (2010).
Article CAS Google Scholar
- Huang, J. T. et al. Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378–382 (1999).
Article CAS PubMed Google Scholar
- Hevener, A. L. et al. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658–1669 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Kang, K. et al. Adipocyte-derived TH2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Odegaard, J. I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Marathe, C. et al. Preserved glucose tolerance in high-fat-fed C57BL/6 mice transplanted with PPARγ−/−, PPARδ−/−, PPARγδ−/−, or LXRαβ−/− bone marrow. J. Lipid Res. 50, 214–224 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kennedy, D. W. & Abkowitz, J. L. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90, 986–993 (1997).
CAS PubMed Google Scholar
- Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Usher, M. G. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Invest. 120, 3350–3364 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Gilbert, K. C. & Brown, N. J. Aldosterone and inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 17, 199–204 (2010).
Article CAS PubMed PubMed Central Google Scholar
- McManus, F., McInnes, G. T. & Connell, J. M. Drug insight: eplerenone, a mineralocorticoid-receptor antagonist. Nature Clin. Pract. Endocrinol. Metab. 4, 44–52 (2008).
Article CAS Google Scholar
- Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011). This paper demonstrates the protective effects of eosinophils and T H 2-type parasitic inflammation in metabolic disease.
Article CAS PubMed PubMed Central Google Scholar
- Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nature Rev. Immunol. 5, 844–852 (2005).
Article CAS Google Scholar
- Newsholme, P., Curi, R., Gordon, S. & Newsholme, E. A. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem. J. 239, 121–125 (1986).
Article CAS PubMed PubMed Central Google Scholar
- Krawczyk, C. M. et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115, 4742–4749 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Doughty, C. A. et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107, 4458–4465 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).
Article CAS PubMed Google Scholar
- Hume, D. A., Radik, J. L., Ferber, E. & Weidemann, M. J. Aerobic glycolysis and lymphocyte transformation. Biochem. J. 174, 703–709 (1978).
Article CAS PubMed PubMed Central Google Scholar
- El-Benna, J., Dang, P. M., Gougerot-Pocidalo, M. A. & Elbim, C. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch. Immunol. Ther. Exp. 53, 199–206 (2005).
CAS Google Scholar
- Wamelink, M. M., Struys, E. A. & Jakobs, C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J. Inherit. Metab. Dis. 31, 703–717 (2008).
Article CAS PubMed Google Scholar
- DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).
Article CAS PubMed Google Scholar
- Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nature Rev. Immunol. 3, 733–744 (2003).
Article CAS Google Scholar
- Ricardo-Gonzalez, R. R. et al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc. Natl Acad. Sci. USA 107, 22617–22622 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Wellen, K. E. & Hotamisligil, G. S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Med. 11, 183–190 (2005).
Article CAS PubMed Google Scholar
- Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).
Article CAS PubMed Google Scholar
- Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).
Article CAS PubMed Google Scholar
- Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).
Article CAS PubMed Google Scholar
- Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nature Med. 17, 610–617 (2011).
Article CAS PubMed Google Scholar