Adoptive immunotherapy for cancer: harnessing the T cell response (original) (raw)
Deguine, J., Breart, B., Lemaitre, F., Di Santo, J. P. & Bousso, P. Intravital imaging reveals distinct dynamics for natural killer and CD8+ T cells during tumor regression. Immunity33, 632–644 (2010). ArticleCASPubMed Google Scholar
Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood116, 4099–4102 (2010). ArticleCASPubMedPubMed Central Google Scholar
Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood118, 4817–4828 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res.17, 4550–4557 (2011). ArticleCASPubMedPubMed Central Google Scholar
Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med.365, 725–733 (2011). ArticleCASPubMedPubMed Central Google Scholar
Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol.29, 917–924 (2011). This study provides evidence that gene-engineered T cells can treat other solid tumour histologies (in this case, metastatic synovial cell sarcoma), in addition to melanoma. ArticlePubMedPubMed Central Google Scholar
Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 8 Dec 2011 (doi:10.1182/blood-2011-10-384388). References 2, 3, 5 and 7 demonstrate the therapeutic power of genetically engineered T cells in the treatment of CD19+ lymphoma. ArticleCASPubMed Google Scholar
Baitsch, L. et al. Exhaustion of tumor-specific CD8 T cells in metastases from melanoma patients. J. Clin. Invest.121, 2350–2360 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood114, 1537–1544 (2009). ArticleCASPubMedPubMed Central Google Scholar
Offringa, R. Antigen choice in adoptive T-cell therapy of cancer. Curr. Opin. Immunol.21, 190–199 (2009). ArticleCASPubMed Google Scholar
Restifo, N. P. et al. Identification of human cancers deficient in antigen processing. J. Exp. Med.177, 265–272 (1993). ArticleCASPubMed Google Scholar
Restifo, N. P. et al. Loss of functional β2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl Cancer Inst.88, 100–108 (1996). ArticleCASPubMed Google Scholar
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science331, 1565–1570 (2011). ArticleCASPubMed Google Scholar
van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science254, 1643–1647 (1991). ArticleCASPubMed Google Scholar
Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther.19, 620–626 (2011). ArticleCASPubMed Google Scholar
Bos, R. et al. Balancing between antitumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen. Cancer Res.68, 8446–8455 (2008). ArticleCASPubMed Google Scholar
Overwijk, W. W. & Restifo, N. P. Autoimmunity and the immunotherapy of cancer: targeting the “self” to destroy the “other”. Crit. Rev. Immunol.20, 433–450 (2000). ArticleCASPubMedPubMed Central Google Scholar
Overwijk, W. W. et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J. Exp. Med.188, 277–286 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kawakami, Y. et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc. Natl Acad. Sci. USA91, 3515–3519 (1994). ArticleCASPubMedPubMed Central Google Scholar
Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood114, 535–546 (2009). ArticleCASPubMedPubMed Central Google Scholar
Palmer, D. C. et al. Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc. Natl Acad. Sci. USA105, 8061–8066 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yeh, S. et al. Ocular and systemic autoimmunity after successful tumor-infiltrating lymphocyte immunotherapy for recurrent, metastatic melanoma. Ophthalmology116, 981–989 (2009). ArticlePubMed Google Scholar
Walia, V., Mu, E. W., Lin, J. C. & Samuels, Y. Delving into somatic variation in sporadic melanoma. Pigment Cell Melanoma Res.25, 155–170 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gilchrest, B. A. Molecular aspects of tanning. J. Invest. Dermatol.131, e14–e17 (2011). ArticlePubMed Google Scholar
Robbins, P. F. et al. A mutated β-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med.183, 1185–1192 (1996). ArticleCASPubMed Google Scholar
Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med.361, 1838–1847 (2009). ArticleCASPubMed Google Scholar
Anders, K. et al. Oncogene-targeting T cells reject large tumors while oncogene inactivation selects escape variants in mouse models of cancer. Cancer Cell20, 755–767 (2011). ArticleCASPubMedPubMed Central Google Scholar
Almeida, L. G. et al. CTdatabase: a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res.37, D816–D819 (2009). ArticleCASPubMed Google Scholar
Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer11, 726–734 (2011). ArticleCAS Google Scholar
Guo, Z. S. et al. De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res.66, 1105–1113 (2006). ArticleCASPubMedPubMed Central Google Scholar
Wargo, J. A. et al. Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunol. Immunother.58, 383–394 (2009). ArticleCASPubMed Google Scholar
Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nature Rev. Cancer5, 615–625 (2005). ArticleCAS Google Scholar
Chinnasamy, N. et al. A TCR targeting the HLA-A*0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J. Immunol.186, 685–696 (2011). ArticleCASPubMed Google Scholar
Ruffell, B. et al. Leukocyte composition of human breast cancer. Proc. Natl Acad. Sci. USA 8 Aug 2011 (doi:10.1073/pnas.1104303108). Article Google Scholar
Engels, B., Rowley, D. A. & Schreiber, H. Targeting stroma to treat cancers. Semin. Cancer Biol.22, 41–49 (2012). ArticleCASPubMed Google Scholar
Kraman, M. et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science330, 827–830 (2010). ArticleCASPubMed Google Scholar
Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest.120, 3953–3968 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res.70, 6171–6180 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chung, A. S., Lee, J. & Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nature Rev. Cancer10, 505–514 (2010). ArticleCAS Google Scholar
Fefer, A. Immunotherapy and chemotherapy of Moloney sarcoma virus-induced tumors in mice. Cancer Res.29, 2177–2183 (1969). CASPubMed Google Scholar
Greenberg, P. D., Cheever, M. A. & Fefer, A. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2− lymphocytes. J. Exp. Med.154, 952–963 (1981). An important and remarkable landmark paper that describes in significant detail the scientific foundations of lymphodepletion prior to adoptive immunotherapy using what are now known as CD4+ T cells. ArticleCASPubMed Google Scholar
Rosenberg, S. A. & Terry, W. D. Passive immunotherapy of cancer in animals and man. Adv. Cancer Res.25, 323–388 (1977). ArticleCASPubMed Google Scholar
Wang, M. et al. Active immunotherapy of cancer with a nonreplicating recombinant fowlpox virus encoding a model tumor-associated antigen. J. Immunol.154, 4685–4692 (1995). CASPubMed Google Scholar
Palmer, D. C. et al. Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumor destruction. J. Immunol.173, 7209–7216 (2004). ArticleCASPubMed Google Scholar
Chen, P. W. et al. Therapeutic antitumor response after immunization with a recombinant adenovirus encoding a model tumor-associated antigen. J. Immunol.156, 224–231 (1996). CASPubMed Google Scholar
Bronte, V. et al. IL-2 enhances the function of recombinant poxvirus-based vaccines in the treatment of established pulmonary metastases. J. Immunol.154, 5282–5292 (1995). CASPubMed Google Scholar
Cormier, J. N. et al. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J. Sci. Am.3, 37–44 (1997). CASPubMedPubMed Central Google Scholar
Leitner, W. W. et al. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nature Med.9, 33–39 (2003). ArticleCASPubMed Google Scholar
Ying, H. et al. Cancer therapy using a self-replicating RNA vaccine. Nature Med.5, 823–827 (1999). ArticleCASPubMed Google Scholar
Overwijk, W. W. et al. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA96, 2982–2987 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rosenberg, S. A. et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol.175, 6169–6176 (2005). ArticleCASPubMed Google Scholar
Irvine, K. R. et al. Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J. Natl Cancer Inst.89, 1595–1601 (1997). ArticleCASPubMed Google Scholar
Rao, J. B. et al. IL-12 is an effective adjuvant to recombinant vaccinia virus-based tumor vaccines: enhancement by simultaneous B7–1 expression. J. Immunol.156, 3357–3365 (1996). CASPubMed Google Scholar
Irvine, K. R. et al. Recombinant virus vaccination against “self” antigens using anchor-fixed immunogens. Cancer Res.59, 2536–2540 (1999). CASPubMedPubMed Central Google Scholar
Irvine, K. R., Rao, J. B., Rosenberg, S. A. & Restifo, N. P. Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases. J. Immunol.156, 238–245 (1996). CASPubMed Google Scholar
Carroll, M. W. et al. Construction and characterization of a triple-recombinant vaccinia virus encoding B7–1, interleukin 12, and a model tumor antigen. J. Natl Cancer Inst.90, 1881–1887 (1998). ArticleCASPubMed Google Scholar
Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med.10, 909–915 (2004). ArticleCASPubMed Google Scholar
Klebanoff, C. A., Acquavella, N., Yu, Z. & Restifo, N. P. Therapeutic cancer vaccines: are we there yet? Immunol. Rev.239, 27–44 (2011). An update on recent vaccine trials showing that although current therapeutic cancer vaccines can extend survival in some studies (by months, not years), they are rarely if ever curative. ArticleCASPubMedPubMed Central Google Scholar
Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med.363, 411–422 (2010). Although criticized by some for the trial design, this study nevertheless served as a key basis for the FDA licensing of sipuleucel-T (Provenge; Dendreon). ArticleCASPubMed Google Scholar
Itzhaki, O. et al. Establishment and large-scale expansion of minimally cultured “young” tumor infiltrating lymphocytes for adoptive transfer therapy. J. Immunother.34, 212–220 (2011). ArticlePubMed Google Scholar
Besser, M. J. et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res.16, 2646–2655 (2010). ArticleCASPubMed Google Scholar
Klebanoff, C. A. et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res.17, 5343–5352 (2011). ArticleCASPubMedPubMed Central Google Scholar
Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nature Immunol.3, 999–1005 (2002). ArticleCAS Google Scholar
Ogino, S., Galon, J., Fuchs, C. S. & Dranoff, G. Cancer immunology-analysis of host and tumor factors for personalized medicine. Nature Rev. Clin. Oncol.8, 711–719 (2011). ArticleCAS Google Scholar
Stratton, M. R. Exploring the genomes of cancer cells: progress and promise. Science331, 1553–1558 (2011). ArticleCASPubMed Google Scholar
Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood118, 6050–6056 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kochenderfer, J. N., Yu, Z., Frasheri, D., Restifo, N. P. & Rosenberg, S. A. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood116, 3875–3886 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kerkar, S. P. et al. Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies. J. Immunother.34, 343–352 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nature Med.14, 1264–1270 (2008). ArticleCASPubMed Google Scholar
Recombinant DNA Advisory Committee. Human gene transfer protocols. National Institutes of Health[online], (2011).
Varela-Rohena, A. et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nature Med.14, 1390–1395 (2008). ArticleCASPubMed Google Scholar
Sadelain, M., Brentjens, R. & Riviere, I. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol.21, 215–223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther.18, 843–851 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baeuerle, P. A. & Itin, C. Clinical experience with gene therapy and bispecific antibodies for T cell-based therapy of cancer. Curr. Pharm. Biotechnol. 14 Feb 2012 [epub ahead of print].
Choi, B. D. et al. Bispecific antibodies engage T cells for antitumor immunotherapy. Expert Opin. Biol. Ther.11, 843–853 (2011). ArticleCASPubMed Google Scholar
Merhavi-Shoham, E., Haga-Friedman, A. & Cohen, C. J. Genetically modulating T-cell function to target cancer. Semin. Cancer Biol.22, 14–22 (2011). ArticleCASPubMed Google Scholar
Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nature Med.17, 1290–1297 (2011). ArticleCASPubMed Google Scholar
Stephan, M. T. et al. T cell-encoded CD80 and 4–1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nature Med.13, 1440–1449 (2007). ArticleCASPubMed Google Scholar
Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 21 Feb 2012 (doi:10.1182/blood-2011-12-400044). ArticleCASPubMedPubMed Central Google Scholar
Kerkar, S. P. et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest.121, 4746–4757 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kerkar, S. P. et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res.70, 6725–6734 (2010). ArticleCASPubMedPubMed Central Google Scholar
Peng, W. et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res.16, 5458–5468 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bendle, G. M. et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nature Med.16, 565–570 (2010). An important paper that explores in significant detail the consequences of 'mispairing' of transduced TCR α- and β-chains. ArticleCASPubMed Google Scholar
Rosenberg, S. A. Of mice, not men: no evidence for graft-versus-host disease in humans receiving T-cell receptor-transduced autologous T cells. Mol. Ther.18, 1744–1745 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vatakis, D. N. et al. Antitumor activity from antigen-specific CD8 T cells generated in vivo from genetically engineered human hematopoietic stem cells. Proc. Natl Acad. Sci. USA108, e1408–e1416 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ha, S. P. et al. Transplantation of mouse HSCs genetically modified to express a CD4-restricted TCR results in long-term immunity that destroys tumors and initiates spontaneous autoimmunity. J. Clin. Invest.120, 4273–4288 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jorritsma, A., Schotte, R., Coccoris, M., de Witte, M. A. & Schumacher, T. N. Prospects and limitations of T cell receptor gene therapy. Curr. Gene Ther.11, 276–287 (2011). ArticleCASPubMed Google Scholar
Brentjens, R., Yeh, R., Bernal, Y., Riviere, I. & Sadelain, M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol. Ther.18, 666–668 (2010). ArticleCASPubMedPubMed Central Google Scholar
Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med.365, 1673–1683 (2011). This paper describes a highly effective means of rapidly deleting gene-engineered T cells in the event of toxicity. ArticleCASPubMedPubMed Central Google Scholar
North, R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med.155, 1063–1074 (1982). ArticleCASPubMed Google Scholar
Cheever, M. A., Greenberg, P. D. & Fefer, A. Specificity of adoptive chemoimmunotherapy of established syngeneic tumors. J. Immunol.125, 711–714 (1980). CASPubMed Google Scholar
Bronte, V. et al. Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood96, 3838–3846 (2000). CASPubMed Google Scholar
Wrzesinski, C. et al. Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J. Clin. Invest.117, 492–501 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wrzesinski, C. et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J. Immunother.33, 1–7 (2010). ArticlePubMedPubMed Central Google Scholar
Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298, 850–854 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dudley, M. E. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol.26, 5233–5239 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nature Rev. Immunol.12, 253–268 (2012). ArticleCAS Google Scholar
Bronte, V. et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol.161, 5313–5320 (1998). One of the first descriptions of the suppressive myeloid subset later known as MDSCs. CASPubMed Google Scholar
Seung, L. P., Rowley, D. A., Dubey, P. & Schreiber, H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc. Natl Acad. Sci. USA92, 6254–6258 (1995). This paper describes a classic experiment demonstrating that depletion of GR1+ cells can enhance tumour immunotherapy. ArticleCASPubMedPubMed Central Google Scholar
Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med.202, 907–912 (2005). ArticleCASPubMedPubMed Central Google Scholar
Paulos, C. M. et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest.117, 2197–2204 (2007). ArticleCASPubMedPubMed Central Google Scholar
Antony, P. A. et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol.174, 2591–2601 (2005). ArticleCASPubMed Google Scholar
Kastenmuller, W. et al. Regulatory T cells selectively control CD8+ T cell effector pool size via IL-2 restriction. J. Immunol.187, 3186–3197 (2011). ArticleCASPubMed Google Scholar
Antony, P. A. & Restifo, N. P. CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J. Immunother.28, 120–128 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bluestone, J. A. The yin and yang of interleukin-2-mediated immunotherapy. N. Engl. J. Med.365, 2129–2131 (2011). ArticlePubMed Google Scholar
Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest.115, 1616–1626 (2005). ArticleCASPubMedPubMed Central Google Scholar
Gattinoni, L., Powell, D. J. Jr, Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nature Rev. Immunol.6, 383–393 (2006). ArticleCAS Google Scholar
Klebanoff, C. A., Gattinoni, L. & Restifo, N. P. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol. Rev.211, 214–224 (2006). ArticleCASPubMedPubMed Central Google Scholar
Palmer, D. C. & Restifo, N. P. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol.30, 592–602 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hinrichs, C. S. et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc. Natl Acad. Sci. USA106, 17469–17474 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hinrichs, C. S. et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood117, 808–814 (2011). ArticleCASPubMedPubMed Central Google Scholar
Klebanoff, C. A. et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA102, 9571–9576 (2005). ArticleCASPubMedPubMed Central Google Scholar
Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA101, 1969–1974 (2004). ArticleCASPubMedPubMed Central Google Scholar
Berger, C. et al. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest.118, 294–305 (2008). An important study in non-human primates showing that cells derived from central memory T cells are more persistentthan those derived from effector memory T cells. ArticleCASPubMed Google Scholar
Wang, X. et al. Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice. Blood117, 1888–1898 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chapuis, A. et al. Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. 5 Mar 2012 (doi:10.1073/pnas.1113748109). References 122 and 126 show that central memory T cells mediate superior antitumour immunity compared with effector memory T cells in murine systems. ArticleCAS Google Scholar
Zhang, Y., Joe, G., Hexner, E., Zhu, J. & Emerson, S. G. Host-reactive CD8+ memory stem cells in graft-versus-host disease. Nature Med.11, 1299–1305 (2005). ArticleCASPubMed Google Scholar
Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature Med.15, 808–813 (2009). ArticleCASPubMed Google Scholar
Mackall, C. L., Fry, T. J. & Gress, R. E. Harnessing the biology of IL-7 for therapeutic application. Nature Rev. Immunol.11, 330–342 (2011). ArticleCAS Google Scholar
June, C. H., Bluestone, J. A., Nadler, L. M. & Thompson, C. B. The B7 and CD28 receptor families. Immunol. Today15, 321–331 (1994). ArticleCASPubMed Google Scholar
Ji, Y. et al. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nature Immunol.12, 1230–1237 (2011). ArticleCAS Google Scholar
Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood111, 5326–5333 (2008). ArticleCASPubMedPubMed Central Google Scholar
Singh, H. et al. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies. Cancer Res.71, 3516–3527 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gattinoni, L., Ji, Y. & Restifo, N. P. Wnt/β-catenin signaling in T-cell immunity and cancer immunotherapy. Clin. Cancer Res.16, 4695–4701 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci. Transl. Med.1, 11ps12 (2009). ArticlePubMedPubMed Central Google Scholar
Pardoll, D. M. & Topalian, S. L. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol.10, 588–594 (1998). ArticleCASPubMed Google Scholar
Xie, Y. et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med.207, 651–667 (2010). ArticleCASPubMedPubMed Central Google Scholar
Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med.207, 637–650 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mumberg, D. et al. CD4+ T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-γ. Proc. Natl Acad. Sci. USA96, 8633–8638 (1999). ArticleCASPubMedPubMed Central Google Scholar
Corthay, A. et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity22, 371–383 (2005). ArticleCASPubMed Google Scholar
Frankel, T. L. et al. Both CD4 and CD8 T cells mediate equally effective in vivo tumor treatment when engineered with a highly avid TCR targeting tyrosinase. J. Immunol.184, 5988–5998 (2010). ArticleCASPubMed Google Scholar
Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med.358, 2698–2703 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nakayamada, S., Takahashi, H., Kanno, Y. & O'Shea, J. J. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 15 Feb 2012 (doi:10.1016/j.coi.2012.01.014). ArticleCASPubMedPubMed Central Google Scholar
Nishimura, T. et al. The critical role of Th1-dominant immunity in tumor immunology. Cancer Chemother. Pharmacol.46, S52–S61 (2000). ArticleCASPubMed Google Scholar
Yen, H. R. et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J. Immunol.183, 7161–7168 (2009). ArticleCASPubMed Google Scholar
Boni, A. et al. Adoptive transfer of allogeneic tumor-specific T cells mediates effective regression of large tumors across major histocompatibility barriers. Blood112, 4746–4754 (2008). ArticleCASPubMedPubMed Central Google Scholar
Restifo, N. P. & Bachinski, M. Imagining a cure: for cancer patients, close is not good enough. The Scientist April 2011, 28–29 (2011).
Blank, C. U., Hooijkaas, A. I., Haanen, J. B. & Schumacher, T. N. Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol. Immunother.60, 1359–1371 (2011). ArticlePubMed Google Scholar
Klebanoff, C. A. et al. Programming tumor-reactive effector memory CD8+ T cells in vitro obviates the requirement for in vivo vaccination. Blood114, 1776–1783 (2009). ArticleCASPubMedPubMed Central Google Scholar
Overwijk, W. W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med.198, 569–580 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell18, 485–498 (2010). A paper that explores the immunological consequences of oncogene withdrawal. ArticleCASPubMedPubMed Central Google Scholar
Sumimoto, H., Imabayashi, F., Iwata, T. & Kawakami, Y. The BRAF–MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med.203, 1651–1656 (2006). ArticleCASPubMedPubMed Central Google Scholar
Boni, A. et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res.70, 5213–5219 (2010). ArticleCASPubMed Google Scholar
DuPage, M., Mazumdar, C., Schmidt, L. M., Cheung, A. F. & Jacks, T. Expression of tumour-specific antigens underlies cancer immunoediting. Nature482, 405–409 (2012). ArticleCASPubMedPubMed Central Google Scholar
Staveley-O'Carroll, K. et al. Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc. Natl Acad. Sci. USA95, 1178–1183 (1998). ArticleCASPubMedPubMed Central Google Scholar