The cellular geography of Aurora kinases (original) (raw)
Glover, D. M., Leibowitz, M. H., McLean, D. A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell81, 95–105 (1995). CASPubMed Google Scholar
Sunkel, C. E. & Glover, D. M. Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci.89, 25–38 (1988). PubMed Google Scholar
Chan, C. S. & Botstein, D. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics135, 677–691 (1993). CASPubMedPubMed Central Google Scholar
Petersen, J., Paris, J., Willer, M., Philippe, M. & Hagan, I. M. The S. pombe aurora-related kinase Ark1 associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. J. Cell Sci.114, 4371–4384 (2001). CASPubMed Google Scholar
Leverson, J. D., Huang, H. K., Forsburg, S. L. & Hunter, T. The Schizosaccharomyces pombe Aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis. Mol. Biol. Cell13, 1132–1143 (2002). CASPubMedPubMed Central Google Scholar
Adams, R. R., Carmena, M. & Earnshaw, W. C. Chromosomal passengers and the (Aurora) ABCs of mitosis. Trends Cell Biol.11, 49–54 (2001). CASPubMed Google Scholar
Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell. Biol.2, 21–32 (2001). CAS Google Scholar
Bischoff, J. R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J.17, 3052–3065 (1998). Provides one of the first insights into the link between Aurora kinases and carcinogenesis. CASPubMedPubMed Central Google Scholar
Giet, R. & Prigent, C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J. Cell Sci.112, 3591–3601 (1999). CASPubMed Google Scholar
Cheetham, G. M. et al. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. J. Biol. Chem.277, 42419–42422 (2002). CASPubMed Google Scholar
Nowakowski, J. et al. Structures of the cancer-related Aurora-A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure10, 1659–1667 (2002). CASPubMed Google Scholar
Earnshaw, W. C. & Bernat, R. L. Chromosomal passengers: towards an integrated view of mitosis. Chromosoma100, 139–146 (1990). Google Scholar
Bernard, M., Sanseau, P., Henry, C., Couturier, A. & Prigent, C. Cloning of STK13, a third human protein kinase related to Drosophila aurora and budding yeast Ipl1 that maps on chromosome 19q13.3-ter. Genomics53, 406–409 (1998). CASPubMed Google Scholar
Tseng, T. C., Chen, S. H., Hsu, Y. P. & Tang, T. K. Protein kinase profile of sperm and eggs: cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2) related to yeast and fly chromosome segregation regulators. DNA Cell Biol.17, 823–833 (1998). CASPubMed Google Scholar
Kimura, M., Matsuda, Y., Yoshioka, T. & Okano, Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J. Biol. Chem.274, 7334–7340 (1999). CASPubMed Google Scholar
Hu, H. M., Chuang, C. K., Lee, M. J., Tseng, T. C. & Tang, T. K. Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1. DNA Cell Biol.19, 679–688 (2000). CASPubMed Google Scholar
Schumacher, J. M., Ashcroft, N., Donovan, P. J. & Golden, A. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development125, 4391–4402 (1998). CASPubMed Google Scholar
Roghi, C. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci.111, 557–572 (1998). CASPubMed Google Scholar
Sugimoto, K. et al. Molecular dynamics of aurora-A kinase in living mitotic cells simultaneously visualized with histone H3 and nuclear membrane protein importinα. Cell Struct. Funct.27, 457–467 (2002). CASPubMed Google Scholar
Berdnik, D. & Knoblich, J. A. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol.12, 640–647 (2002). This describes a role for Aurora A in asymmetric cell division and examines the dynamics of Aurora-A association with centrosomes. CASPubMed Google Scholar
Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, a novel Xenopus MAP involved in spindle pole organization. J. Cell Biol.149, 1405–1418 (2000). CASPubMedPubMed Central Google Scholar
Gruss, O. J. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nature Cell Biol.4, 871–879 (2002). CASPubMed Google Scholar
Giet, R. & Prigent, C. The non-catalytic domain of the Xenopus laevis aurora A kinase localises the protein to the centrosome. J. Cell Sci.114, 2095–2104 (2001). CASPubMed Google Scholar
Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol.156, 437–451 (2002). RNAi analysis confirms a role for Aurora A in centrosome maturation and separation. CASPubMedPubMed Central Google Scholar
Kufer, T. A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol.158, 617–623 (2002). CASPubMedPubMed Central Google Scholar
Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol.155, 1109–1116 (2001). CASPubMedPubMed Central Google Scholar
Giet, R., Uzbekov, R., Cubizolles, F., Le Guellec, K. & Prigent, C. The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J. Biol. Chem.274, 15005–15013 (1999). CASPubMed Google Scholar
Tsai, M. Y. et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nature Cell Biol.5, 242–248 (2003). This study shows that TPX2 activates Aurora-A kinase, and proposes that Aurora A might be an important downstream target of Ran–GTP in promoting mitotic spindle assembly. CASPubMed Google Scholar
Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science284, 1359–1362 (1999). CASPubMed Google Scholar
Kalab, P., Pu, R. T. & Dasso, M. The ran GTPase regulates mitotic spindle assembly. Curr. Biol.9, 481–484 (1999). CASPubMed Google Scholar
Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature400, 178–181 (1999). CASPubMed Google Scholar
Eyers, P. A., Erikson, E., Chen, L. G. & Maller, J. L. A novel mechanism for activation of the protein kinase aurora a. Curr. Biol.13, 691–697 (2003). This study shows that TPX2 activates Aurora-A kinase in part by blocking the inactivation of the kinase by protein phosphatase 1. CASPubMed Google Scholar
Andresson, T. & Ruderman, J. V. The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J.17, 5627–5637 (1998). CASPubMedPubMed Central Google Scholar
Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature404, 302–307 (2000). This describes the involvement of Aurora A in cell-cycle regulation by regulating poly(A)-dependent translation. CASPubMed Google Scholar
Frank-Vaillant, M. et al. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J. Cell Sci.113, 1127–1138 (2000). CASPubMed Google Scholar
Maton, G. et al. Cdc2–Cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes. J. Biol. Chem.278, 21439–21449 (2003). CASPubMed Google Scholar
Schumacher, J. M., Golden, A. & Donovan, P. J. AIR-2: An Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J. Cell Biol.143, 1635–1646 (1998). CASPubMedPubMed Central Google Scholar
Castro, A., Mandart, E., Lorca, T. & Galas, S. Involvement of Aurora A kinase during meiosis I–II transition in Xenopus oocytes. J. Biol. Chem.278, 2236–2241 (2003). CASPubMed Google Scholar
Littlepage, L. E. et al. Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc. Natl Acad. Sci. USA99, 15440–15445 (2002). Systematic analysis of the residues that are relevant for regulation of Aurora-A kinase. CASPubMedPubMed Central Google Scholar
Walter, A. O., Seghezzi, W., Korver, W., Sheung, J. & Lees, E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene19, 4906–4916 (2000). CASPubMed Google Scholar
Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell111, 163–172 (2002). This is the most thorough study yet of the protein targets of the Aurora kinase Ipl1. CASPubMed Google Scholar
Francisco, L., Wang, W. & Chan, C. S. Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol.14, 4731–4740 (1994). CASPubMedPubMed Central Google Scholar
Katayama, H., Zhou, H., Li, Q., Tatsuka, M. & Sen, S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J. Biol. Chem.276, 46219–46224 (2001). CASPubMed Google Scholar
Murnion, M. E. et al. Chromatin-associated protein phosphatase 1 regulates Aurora-B and histone H3 phosphorylation. J. Biol. Chem.276, 26656–26665 (2001). CASPubMed Google Scholar
Honda, K. et al. Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene19, 2812–2819 (2000). CASPubMed Google Scholar
Castro, A. et al. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep.3, 1209–1214 (2002). CASPubMedPubMed Central Google Scholar
Littlepage, L. E. & Ruderman, J. V. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev.16, 2274–2285 (2002). References 46 and 48 do a good job of dissecting the complexities of Aurora-A regulation by the APC/C. CASPubMedPubMed Central Google Scholar
Kiat, L. S., Hui, K. M. & Gopalan, G. Aurora-A kinase interacting protein (AIP), a novel negative regulator of human Aurora-A kinase. J. Biol. Chem.277, 45558–45565 (2002). CASPubMed Google Scholar
Terada, Y. et al. AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J.17, 667–676 (1998). One of the first reports showing the requirement of Aurora B for cytokinesis. CASPubMedPubMed Central Google Scholar
Adams, R. R., Maiato, H., Earnshaw, W. C. & Carmena, M. Essential roles of Drosophila inner centromere protein (INCENP) and Aurora-B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol.153, 865–880 (2001). CASPubMedPubMed Central Google Scholar
Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of Aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell13, 1099–1108 (2002). Examines the dynamic behaviour of Aurora-B kinasein vivousing green-fluorescent-protein-labelled protein. CASPubMedPubMed Central Google Scholar
Nicklas, R. B. & Staehly, C. A. Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma21, 1–16 (1967). CASPubMed Google Scholar
Nicklas, R. B., Wards, S. C. & Gorbsky, G. J. Kinetochore chemistry is sensitive to tension and may link mitotic forces for a cell cycle checkpoint. J. Cell Biol.130, 929–939 (1995). CASPubMed Google Scholar
Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell108, 317–329 (2002). This paper was the first to propose that Ipl1 might be involved in the resolution of syntelic chromsome attachments. CASPubMed Google Scholar
Kallio, M. J., McCleland, M. L., Stukenberg, P. T. & Gorbsky, G. J. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol.12, 900–905 (2002). Antibody injection is used to identify some of the many functions of Aurora B in mammalian cells. CASPubMed Google Scholar
Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2 and Cenp-E to kinetochores. J. Cell Biol.161, 267–280 (2003). This description of a small-molecule inhibitor of Aurora B identifies a role for the kinase in the spindle-assembly checkpoint when the checkpoint is activated in the presence of microtubules by altering tension within the spindle. CASPubMedPubMed Central Google Scholar
Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol.161, 281–294 (2003). This description of a second small-molecule inhibitor of Aurora B provides the best evidence to date that the kinase is involved in the resolution of syntelic chromosomal attachments during prometaphase. CASPubMedPubMed Central Google Scholar
Murata-Hori, M. & Wang, Y. The kinase activity of Aurora B is required for kinetochore–microtubule interactions during mitosis. Curr. Biol.12, 894–899 (2002). CASPubMed Google Scholar
Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev.13, 532–544 (1999). CASPubMedPubMed Central Google Scholar
Kang, J. et al. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J. Cell Biol.155, 763–774 (2001). CASPubMedPubMed Central Google Scholar
Buvelot, S., Tatsutani, S. Y., Vermaak, D. & Biggins, S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J. Cell Biol.160, 329–339 (2003). CASPubMedPubMed Central Google Scholar
Shang, C. et al. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol. Biol. Cell14, 3342–3355 (2003). CASPubMedPubMed Central Google Scholar
Honda, R., Korner, R. & Nigg, E. A. Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol. Biol. Cell14, 3325–3341 (2003). A thorough study of the regulation of Aurora-B kinase activity by INCENP and survivin. CASPubMedPubMed Central Google Scholar
Zeitlin, S. G., Shelby, R. D. & Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J. Cell. Biol.155, 1147–1157 (2001). CASPubMedPubMed Central Google Scholar
Gurley, L. R., D'Anna, J. A., Barham, S. S., Deaven, L. L. & Tobey, R. A. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur. J. Biochem.84, 1–15 (1978). CASPubMed Google Scholar
Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell102, 279–291 (2000). CASPubMed Google Scholar
Speliotes, E. K., Uren, A., Vaux, D. & Horvitz, H. R. The survivin-like C. elegans BIR-1 protein acts with the Aurora-like kinase AIR-2 to affect chromosomes and the spindle midzone. Mol. Cell6, 211–223 (2000). CASPubMed Google Scholar
Giet, R. & Glover, D. M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol.152, 669–681 (2001). CASPubMedPubMed Central Google Scholar
Crosio, C. et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol.22, 874–885 (2002). CASPubMedPubMed Central Google Scholar
MacCallum, D. E., Losada, A., Kobayashi, R. & Hirano, T. ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol. Biol. Cell13, 25–39 (2002). CASPubMedPubMed Central Google Scholar
Goto, H. et al. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J. Biol. Chem.274, 25543–25549 (1999). CASPubMed Google Scholar
Goto, H., Yasui, Y., Nigg, E. A. & Inagaki, M. Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation. Genes Cells7, 11–17 (2002). CASPubMed Google Scholar
Giet, R. & Prigent, C. The Xenopus laevis aurora/Ip11p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Exp. Cell Res.258, 145–151 (2000). CASPubMed Google Scholar
Hirano, T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev.16, 399–414 (2002). CASPubMed Google Scholar
Petersen, J. & Hagan, I. M. S. pombe Aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr. Biol.13, 590–597 (2003). This study uses yeast genetics to show a role for Aurora B and its associated protein survivin in the spindle-assembly checkpoint. CASPubMed Google Scholar
Kaitna, S., Pasierbek, P., Jantsch, M., Loidl, J. & Glotzer, M. The Aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr. Biol.12, 798–812 (2002). CASPubMed Google Scholar
Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev.16, 729–742 (2002). CASPubMedPubMed Central Google Scholar
Rogers, E., Bishop, J. D., Waddle, J. A., Schumacher, J. M. & Lin, R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J. Cell Biol.157, 219–229 (2002). This provides important insights into the role of Aurora B in chromosome segregation in meiosis. CASPubMedPubMed Central Google Scholar
Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell1, 759–770 (2001). CASPubMed Google Scholar
Mackay, A. M., Ainsztein, A., Eckley, D. M. & Earnshaw, W. C. A dominant mutant of inner centromere protein (INCENP), a chromosomal protein, disrupts prometaphase congression and cytokinesis. J. Cell Biol.140, 991–1002 (1998). CASPubMedPubMed Central Google Scholar
Adams, R. R. et al. INCENP binds the aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol10, 1075–1078 (2000). CASPubMed Google Scholar
Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an Aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol.10, 1172–1181 (2000). CASPubMed Google Scholar
Severson, A. F., Hamill, D. R., Carter, J. C., Schumacher, J. & Bowerman, B. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr. Biol.10, 1162–1171 (2000). CASPubMed Google Scholar
Murata-Hori, M. et al. Myosin II regulatory light chain as a novel substrate for AIM-1, an aurora/Ipl1p-related kinase from rat. J. Biochem. (Tokyo)128, 903–907 (2000). CAS Google Scholar
Goto, H. et al. Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J. Biol. Chem.278, 8526–8530 (2003). CASPubMed Google Scholar
Kawajiri, A. et al. Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate Type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol. Biol. Cell14, 1489–1500 (2003). CASPubMedPubMed Central Google Scholar
Jantsch-Plunger, V. et al. CYK-4: A Rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol.149, 1391–1404 (2000). CASPubMedPubMed Central Google Scholar
Minoshima, Y., et al. Phosphorylation by Aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell4, 549–560 (2003). An elegant study that identifies a new substrate for Aurora B and shows how the kinase might participate in the regulation of cytokinesis. CASPubMed Google Scholar
Kishi, K., Sasaki, T., Kuroda, S., Itoh, T. & Takai, Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J. Cell Biol.120, 1187–1195 (1993). CASPubMed Google Scholar
Mabuchi, I. et al. A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygote1, 325–331 (1993). CASPubMed Google Scholar
Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev.15, 3118–3129 (2001). CASPubMedPubMed Central Google Scholar
Carvalho, A., Carmena, M., Sambade, C., Earnshaw, W. C. & Wheatley, S. P. Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J. Cell Sci.116, 2987–2998 (2003). CASPubMed Google Scholar
Lens, S. M. A. et al. Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J.22, 2934–2947 (2003). References 93 and 94 use RNAi technology to show that survivin is required for the spindle-assembly checkpoint in the presence of microtubules, and for BubR1 targeting to the kinetochore. CASPubMedPubMed Central Google Scholar
Sugiyama, K. et al. Aurora-B associated protein phosphatases as negative regulators of kinase activation. Oncogene21, 3103–3111 (2002). CASPubMed Google Scholar
Wheatley, S. P., Carvalho, A., Vagnarelli, P. & Earnshaw, W. C. INCENP is required for proper targeting of survivin to the centromeres and the anaphase spindle during mitosis. Curr. Biol.11, 886–890 (2001). CASPubMed Google Scholar
Bolton, M. A. et al. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol. Biol. Cell13, 3064–3077 (2002). A thorough study of the regulation of Aurora-B kinase activity by INCENP and survivin. CASPubMedPubMed Central Google Scholar
Wheatley, S. P., Kandels-Lewis, S. E., Adams, R. R., Ainsztein, A. M. & Earnshaw, W. C. INCENP binds directly to tubulin and requires dynamic microtubules to target to the cleavage furrow. Exp. Cell. Res.262, 122–127 (2001). CASPubMed Google Scholar
Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol.143, 1763–1774 (1998). CASPubMedPubMed Central Google Scholar
Terada, Y., Katayama, H., Tatsuka, M. & Kuriyama, R. AIM-1 regulates onset of cytokinesis by targeting INCENP to midzone and midbody. Mol. Biol. Cell11S, 343a (2000). Google Scholar
Bishop, J. D. & Schumacher, J. M. Phosphorylation of the carboxyl terminus of inner centromere protein (INCENP) by the Aurora B kinase stimulates Aurora B kinase activity. J. Biol. Chem.277, 27577–27580 (2002). Provided a clear demonstration that INCENP phosphorylation by Aurora B is part of a feedback loop that stimulates kinase activity. CASPubMed Google Scholar
Deveraux, Q. L. & Reed, J. C. IAP family proteins — suppressors of apoptosis. Genes Dev.13, 239–252 (1999). CASPubMed Google Scholar
Uren, A. G. et al. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol.10, 1319–1328 (2000). CASPubMed Google Scholar
Chen, J. et al. Survivin enhances Aurora-B kinase activity and localizes Aurora-B in human cells. J. Biol. Chem.278, 486–490 (2003). CASPubMed Google Scholar
Morishita, J. et al. Bir1/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells6, 743–763 (2001). CASPubMed Google Scholar
Martineau-Thuillier, S., Andreassen, P. R. & Margolis, R. L. Colocalization of TD-60 and INCENP throughout G2 and mitosis: evidence for their possible interaction in signalling cytokinesis. Chromosoma (Berl.)107, 461–470 (1998). CAS Google Scholar
Mollinari, C. et al. The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev. Cell5, 295–307 (2003). CASPubMed Google Scholar
Ohi, R., Coughlin, M. L., Lane, W. S. & Mitchison, T. J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell5, 309–321 (2003). CASPubMed Google Scholar
Romano, A. et al. CSC-1: a subunit of the Aurora B kinase complex that binds to the survivin-like protein BIR-1 and the incenp-like protein ICP-1. J. Cell Biol.161, 229–236 (2003). CASPubMedPubMed Central Google Scholar
Tatsuka, M. et al. Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res.58, 4811–4816 (1998). CASPubMed Google Scholar
Takahashi, T. et al. Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn. J. Cancer Res.91, 1007–1014 (2000). CASPubMedPubMed Central Google Scholar
Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet.20, 189–193 (1998). CASPubMed Google Scholar
Tanner, M. M. et al. Frequent amplification of chromosomal region 20q12-q13 in ovarian cancer. Clin. Cancer Res.6, 1833–1839 (2000). CASPubMed Google Scholar
Boveri, T. Zur Frage der Entstehung maligner Tumoren (Fischer Verlag, Jena, 1914). Google Scholar
Doxsey, S. Duplicating dangerously: linking centrosome duplication and aneuploidy. Mol. Cell10, 439–440 (2002). CASPubMed Google Scholar
Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J.21, 483–492 (2002). Presents data indicating that centrosome amplification in response to Aurora kinase overexpression arises as a result of failures in cytokinesis. CASPubMedPubMed Central Google Scholar
Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell3, 51–62 (2003). CASPubMed Google Scholar
Chen, S. S., Chang, P. C., Cheng, Y. W., Tang, F. M. & Lin, Y. S. Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. EMBO J.21, 4491–4499 (2002). CASPubMedPubMed Central Google Scholar
Minn, A. J., Boise, L. H. & Thompson, C. B. Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage. Genes Dev.10, 2621–2631 (1996). CASPubMed Google Scholar
Lanni, J. S. & Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol.18, 1055–1064 (1998). CASPubMedPubMed Central Google Scholar
Khan, S. H. & Wahl, G. M. p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res.58, 396–401 (1998). CASPubMed Google Scholar
Casenghi, M. et al. p53-independent apoptosis and p53-dependent block of DNA rereplication following mitotic spindle inhibition in human cells. Exp. Cell Res.250, 339–350 (1999). CASPubMed Google Scholar
Andreassen, P. R., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell12, 1315–1328 (2001). CASPubMedPubMed Central Google Scholar
Gigoux, V., L'Hoste, S., Raynaud, F., Camonis, J. & Garbay, C. Identification of Aurora kinases as RasGAP Src homology 3 domain-binding proteins. J. Biol. Chem.277, 23742–23746 (2002). CASPubMed Google Scholar
Ota, T. et al. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res.62, 5168–5177 (2002). CASPubMed Google Scholar
Gautier, J., Norbury, C., Lohka, M., Nurse, P. & Maller, J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell54, 433–439 (1988). CASPubMed Google Scholar
Lohka, M., Hayes, M. K. & Maller, J. L. Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl Acad. Sci. USA85, 3009–3013 (1988). CASPubMedPubMed Central Google Scholar
Pavletich, N. P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol.287, 821–828 (1999). CASPubMed Google Scholar
Kufer, T. A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol.158, 617–623 (2002). CASPubMedPubMed Central Google Scholar