The SANT domain: a unique histone-tail-binding module? (original) (raw)

References

  1. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
    Article CAS PubMed Google Scholar
  2. Luger, K. & Richmond, T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8, 140–146 (1998).
    Article CAS PubMed Google Scholar
  3. Hansen, J. C., Tse, C. & Wolffe, A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry 37, 17637–17641 (1998).
    Article CAS PubMed Google Scholar
  4. Marmorstein, R. Protein modules that manipulate histone tails for chromatin regulation. Nature Rev. Mol. Cell Biol. 2, 422–432 (2001).
    Article CAS Google Scholar
  5. Turner, B. M. Cellular memory and the histone code. Cell 111, 285–291 (2002).
    Article CAS PubMed Google Scholar
  6. Fry, C. J. & Peterson, C. L. Chromatin remodeling enzymes: who's on first? Curr. Biol. 11, R185–R197 (2001).
    Article CAS PubMed Google Scholar
  7. Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).
    Article CAS PubMed Google Scholar
  8. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).
    Article CAS PubMed Google Scholar
  9. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).
    Article CAS PubMed Google Scholar
  10. Ornaghi, P., Ballario, P., Lena, A. M., Gonzalez, A. & Filetici, P. The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J. Mol. Biol. 287, 1–7 (1999).
    Article CAS PubMed Google Scholar
  11. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  12. Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  13. Aasland, R., Stewart, A. F. & Gibson, T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem. Sci. 21, 87–88 (1996).
    CAS PubMed Google Scholar
  14. Ogata, K. et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79, 639–648 (1994).
    Article CAS PubMed Google Scholar
  15. Tahirov, T. H. et al. Crystals of ternary protein–DNA complexes composed of DNA-binding domains of c-Myb or v-Myb, C/EBPα or C/EBPβ and tom-1A promoter fragment. Acta Crystallogr. D 57, 1655–1658 (2001).
    Article CAS PubMed Google Scholar
  16. Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell 12, 449–460 (2003).
    Article PubMed Google Scholar
  17. Barbaric, S., Reinke, H. & Horz, W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol. Cell. Biol. 23, 3468–3476 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  18. Boyer, L. A. et al. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol. Cell 10, 935–942 (2002).
    Article CAS PubMed Google Scholar
  19. Sterner, D. E., Wang, X., Bloom, M. H., Simon, G. M. & Berger, S. L. The SANT domain of Ada2 is required for normal acetylation of histones by the yeast SAGA complex. J. Biol. Chem. 277, 8178–8186 (2002).
    Article CAS PubMed Google Scholar
  20. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).
    Article CAS PubMed Google Scholar
  21. Marcus, G. A., Silverman, N., Berger, S. L., Horiuchi, J. & Guarente, L. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13, 4807–4815 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  22. Sterner, D. E. et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19, 86–98 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  23. Elfring, L. K. et al. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 148, 251–265 (1998).
    CAS PubMed PubMed Central Google Scholar
  24. Yu, J., Li, Y., Ishizuka, T., Guenther, M. G. & Lazar, M. A. A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J. 22, 3403–3410 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  25. Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 ( 2001).
    Article CAS PubMed PubMed Central Google Scholar
  26. Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276, 6817–6824 (2001).
    Article CAS PubMed Google Scholar
  27. You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc. Natl Acad. Sci. USA 98, 1454–1458 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  28. Georgel, P. T., Tsukiyama, T. & Wu, C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 16, 4717–4726 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  29. Corona, D. F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999).
    Article CAS PubMed Google Scholar
  30. Clapier, C. R., Nightingale, K. P. & Becker, P. B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucl. Acids Res. 30, 649–655 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  31. Boyer, L. A. et al. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem. 275, 18864–18870 (2000).
    Article CAS PubMed Google Scholar
  32. Zargarian, L. et al. Myb-DNA recognition: role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb. Biochemistry 38, 1921–1929 (1999).
    Article CAS PubMed Google Scholar
  33. Langer, M. R., Tanner, K. G. & Denu, J. M. Mutational analysis of conserved residues in the GCN5 family of histone acetyltransferases. J. Biol. Chem. 276, 31321–31331 (2001).
    Article CAS PubMed Google Scholar
  34. Narlikar, G. J., Phelan, M. L. & Kingston, R. E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219–1230 (2001).
    Article CAS PubMed Google Scholar
  35. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).
    CAS PubMed Google Scholar
  36. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
    Article CAS PubMed Google Scholar
  37. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25, 4876–4882 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  38. Sali, A., Potterton, L., Yuan, F., van Vlijmen, H. & Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins 23, 318–326 (1995).
    Article CAS PubMed Google Scholar

Download references