The SANT domain: a unique histone-tail-binding module? (original) (raw)
References
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature389, 251–260 (1997). ArticleCASPubMed Google Scholar
Luger, K. & Richmond, T. J. The histone tails of the nucleosome. Curr. Opin. Genet. Dev.8, 140–146 (1998). ArticleCASPubMed Google Scholar
Hansen, J. C., Tse, C. & Wolffe, A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry37, 17637–17641 (1998). ArticleCASPubMed Google Scholar
Marmorstein, R. Protein modules that manipulate histone tails for chromatin regulation. Nature Rev. Mol. Cell Biol.2, 422–432 (2001). ArticleCAS Google Scholar
Fry, C. J. & Peterson, C. L. Chromatin remodeling enzymes: who's on first? Curr. Biol.11, R185–R197 (2001). ArticleCASPubMed Google Scholar
Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell108, 475–487 (2002). ArticleCASPubMed Google Scholar
Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature399, 491–496 (1999). ArticleCASPubMed Google Scholar
Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science288, 1422–1425 (2000). ArticleCASPubMed Google Scholar
Ornaghi, P., Ballario, P., Lena, A. M., Gonzalez, A. & Filetici, P. The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J. Mol. Biol.287, 1–7 (1999). ArticleCASPubMed Google Scholar
Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev.17, 1870–1881 (2003). ArticleCASPubMedPubMed Central Google Scholar
Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev.17, 1823–1828 (2003). ArticleCASPubMedPubMed Central Google Scholar
Aasland, R., Stewart, A. F. & Gibson, T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem. Sci.21, 87–88 (1996). CASPubMed Google Scholar
Ogata, K. et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell79, 639–648 (1994). ArticleCASPubMed Google Scholar
Tahirov, T. H. et al. Crystals of ternary protein–DNA complexes composed of DNA-binding domains of c-Myb or v-Myb, C/EBPα or C/EBPβ and tom-1A promoter fragment. Acta Crystallogr. D57, 1655–1658 (2001). ArticleCASPubMed Google Scholar
Grüne, T. et al. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol. Cell12, 449–460 (2003). ArticlePubMed Google Scholar
Barbaric, S., Reinke, H. & Horz, W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol. Cell. Biol.23, 3468–3476 (2003). ArticleCASPubMedPubMed Central Google Scholar
Boyer, L. A. et al. Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol. Cell10, 935–942 (2002). ArticleCASPubMed Google Scholar
Sterner, D. E., Wang, X., Bloom, M. H., Simon, G. M. & Berger, S. L. The SANT domain of Ada2 is required for normal acetylation of histones by the yeast SAGA complex. J. Biol. Chem.277, 8178–8186 (2002). ArticleCASPubMed Google Scholar
Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell111, 369–379 (2002). ArticleCASPubMed Google Scholar
Marcus, G. A., Silverman, N., Berger, S. L., Horiuchi, J. & Guarente, L. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J.13, 4807–4815 (1994). ArticleCASPubMedPubMed Central Google Scholar
Sterner, D. E. et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol.19, 86–98 (1999). ArticleCASPubMedPubMed Central Google Scholar
Elfring, L. K. et al. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics148, 251–265 (1998). CASPubMedPubMed Central Google Scholar
Yu, J., Li, Y., Ishizuka, T., Guenther, M. G. & Lazar, M. A. A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J.22, 3403–3410 (2003). ArticleCASPubMedPubMed Central Google Scholar
Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol.21, 6091–6101 ( 2001). ArticleCASPubMedPubMed Central Google Scholar
Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem.276, 6817–6824 (2001). ArticleCASPubMed Google Scholar
You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST- human histone deacetylase complex. Proc. Natl Acad. Sci. USA98, 1454–1458 (2001). ArticleCASPubMedPubMed Central Google Scholar
Georgel, P. T., Tsukiyama, T. & Wu, C. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J.16, 4717–4726 (1997). ArticleCASPubMedPubMed Central Google Scholar
Corona, D. F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell3, 239–245 (1999). ArticleCASPubMed Google Scholar
Clapier, C. R., Nightingale, K. P. & Becker, P. B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucl. Acids Res.30, 649–655 (2002). ArticleCASPubMedPubMed Central Google Scholar
Boyer, L. A. et al. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem.275, 18864–18870 (2000). ArticleCASPubMed Google Scholar
Zargarian, L. et al. Myb-DNA recognition: role of tryptophan residues and structural changes of the minimal DNA binding domain of c-Myb. Biochemistry38, 1921–1929 (1999). ArticleCASPubMed Google Scholar
Langer, M. R., Tanner, K. G. & Denu, J. M. Mutational analysis of conserved residues in the GCN5 family of histone acetyltransferases. J. Biol. Chem.276, 31321–31331 (2001). ArticleCASPubMed Google Scholar
Narlikar, G. J., Phelan, M. L. & Kingston, R. E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell8, 1219–1230 (2001). ArticleCASPubMed Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). CASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCASPubMed Google Scholar
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res.25, 4876–4882 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sali, A., Potterton, L., Yuan, F., van Vlijmen, H. & Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins23, 318–326 (1995). ArticleCASPubMed Google Scholar