Protein modules that manipulate histone tails for chromatin regulation (original) (raw)
Wolffe, A. P. Chromatin: Structure and Function (Academic Press, London, 1992). Google Scholar
Allfrey, V. G., Faulkner, R. & Mirsky, A. E. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA51, 786–794 (1964). ArticleCASPubMedPubMed Central Google Scholar
Bradbury, E. M. Reversible histone modifications and the chromosome cell cycle. BioEssays14, 9–16 (1992). ArticleCASPubMed Google Scholar
Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature389, 349–352 (1997). ArticleCASPubMed Google Scholar
Thompson, J. S., Ling, X. & Grunstein, M. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature369, 245–247 (1994). ArticleCASPubMed Google Scholar
Durrin, L., Mann, R., Kayne, P. & Grunstein, M. Yeast histone H4 N–terminal sequence is required for promoter activation in vivo. Cell65, 1023–1031 (1991). ArticleCASPubMed Google Scholar
Morales, V. & Richard-Foy, H. Role of histone N-terminal tails and their acetylation in nucleosome dynamics. Mol. Cell. Biol.20, 7230–7237 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hansen, J. C., Tse, C. & Wolffe, A. P. Structure and function of the core histone N-termini: more than meets the eye. Biochemistry37, 17637–17641 (1998). ArticleCASPubMed Google Scholar
Sivolob, A., De Lucia, F., Alilat, M. & Prunell, A. Nucleosome dynamics. VI. Histone tail regulation of tetrasome chiral transition. A relaxation study of tetrasomes on DNA minicircles. J. Mol. Biol.295, 55–69 (2000). ArticleCASPubMed Google Scholar
Wang, X., Moore, S. C., Laszckzak, M. & Ausio, J. Acetylation increases the α-helical content of the histone tails of the nucleosome. J. Biol. Chem.275, 35013–35020 (2000). ArticleCASPubMed Google Scholar
Mutskov, V. et al. Persistent interactions of core histone tails with nucleosomal DNA following acetylation and transcription factor binding. Mol. Cell. Biol.18, 6293–6304 (1998). ArticleCASPubMedPubMed Central Google Scholar
Polach, K. J., Lowary, P. T. & Widom, J. Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J. Mol. Biol.298, 211–223 (2000). ArticleCASPubMed Google Scholar
Turner, B. M. Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell. Mol. Life Sci.54, 21–31 (1998).The first to suggest that histone tail modifications may be histone marks that signal downstream transcriptional events. ArticleCASPubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000).Builds on the initial proposal of Turner, to propose that distinct histone tail modifications provide a 'histone code' for downstream transcriptional activities. ArticleCASPubMed Google Scholar
Georgakopoulos, T. & Thireos, G. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J.11, 4145–4152 (1992). ArticleCASPubMedPubMed Central Google Scholar
Marcus, G., Silverman, N., Berger, S., Horiuchi, J. & Guarente, L. Functional similarity and physical association between GCN5 and ADA2-putative transcriptional adaptors. EMBO J.13, 4807–4815 (1994). ArticleCASPubMedPubMed Central Google Scholar
Horiuchi, J., Silverman, N., Marcus, G. A. & Guarente, L. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol.15, 1203–1209 (1995). ArticleCASPubMedPubMed Central Google Scholar
Candau, R. & Berger, S. L. Structural and functional analysis of yeast putative adaptors: evidence for an adaptor complex in vivo. J. Biol. Chem.271, 5237–5345 (1996). ArticleCASPubMed Google Scholar
Barlev, N. A. et al. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem.270, 19337–19344 (1995). ArticleCASPubMed Google Scholar
Silverman, N., Agapite, J. & Guarente, L. Yeast ADA2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl Acad. Sci. USA91, 11665–11668 (1994). ArticleCASPubMedPubMed Central Google Scholar
Zamir, I. et al. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol. Cell. Biol.16, 5458–5465 (1996). ArticleCASPubMedPubMed Central Google Scholar
Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature377, 397–404 (1995). ArticleCASPubMed Google Scholar
Kurokawa, R. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature377, 451–454 (1995). ArticleCASPubMed Google Scholar
Heinzel, T. et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature387, 43–48 (1997). ArticleCASPubMed Google Scholar
Alland, L. et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature387, 49–55 (1997). ArticleCASPubMed Google Scholar
Pogo, B. G. T., Allfrey, V. G. & Mirsky, A. E. RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc. Natl Acad. Sci. USA55, 6212–6222 (1966). Article Google Scholar
Vidali, G., Boffa, L. C., Bradbury, E. M. & Allfrey, V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNAase I sensitivity of the associated DNA sequences. Proc. Natl Acad. Sci. USA75, 2239–2243 (1978). ArticleCASPubMedPubMed Central Google Scholar
Hebbes, T. R., Thorne, A. W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J.7, 1395–1403 (1988). ArticleCASPubMedPubMed Central Google Scholar
Hebbes, T. R., Clayton A. L., Throne A. W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J.13, 1823–1830 (1994). ArticleCASPubMedPubMed Central Google Scholar
Vettese-Dadey, M. et al. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J15, 2508–2518 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sealy, L. & Chalkley, R. DNA associated with hyperacetylated histone is preferentially digested by DNase I. Nucleic Acids Res.5, 1863–1876 (1978). ArticleCASPubMedPubMed Central Google Scholar
Brownell, J. E. et al. Tetrahymena histone acetyltransferase A: a homolog of yeast Gcn5p linking histone acetylation to gene activation. Cell84, 843–851 (1996).The first to functionally link gene activation by a transcriptional co-activator to the histone acetyltransferase activity of that co-activator. ArticleCASPubMed Google Scholar
Berger, S. L. et al. Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell70, 251–265 (1992). ArticleCASPubMed Google Scholar
Wang, L., Liu, L. & Berger, S. L. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev.12, 640–653 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kuo, M. H., Zhou, J. X., Jambeck, P., Churchill, M. E. A. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev.12, 627–639 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shikama, N., Lyon, J. & LaThangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol.7, 230–236 (1997). ArticleCAS Google Scholar
Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature384, 641–643 (1996). ArticleCASPubMed Google Scholar
Mizzen, C. A. et al. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell87, 1261–1270 (1996). ArticleCASPubMed Google Scholar
Cress, W. D. & Seto, E. Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol.184, 1–16 (2000). ArticleCASPubMed Google Scholar
Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays20, 615–626 (1998). ArticleCASPubMed Google Scholar
Neal, K. C., Pannuti, A., Smith, E. R. & Lucchesi, J. C. A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim. Biophys. Acta1490, 170–174 (2000). ArticleCAS Google Scholar
Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev.64, 435–459 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kawasaki, H. et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature405, 195–200 (2000). ArticleCASPubMed Google Scholar
Takechi, S. & Nakayama, T. Sas3 is a histone acetyltransferase and requires a zinc finger motif. Biochem. Biophys. Res. Commun.266, 405–410 (1999). ArticleCASPubMed Google Scholar
EhrenhoferMurray, A. E., Rivier, D. H. & Rine, J. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics145, 923–934 (1997). CAS Google Scholar
Kuo, M. H. et al. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature383, 269–272 (1996). ArticleCASPubMed Google Scholar
Trievel, R. C., Li, F.-Y. & Marmorstein, R. Application of a novel fluorescence histone acetyltransferase enzyme assay to study the substrate specificity of human PCAF. Anal. Biochem.287, 319–328 (2000). ArticleCASPubMed Google Scholar
John, S. et al. The Something About Silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAFII30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)–FACT complex. Genes Dev.14, 1196–1208 (2000). CASPubMedPubMed Central Google Scholar
Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell87, 953–959 (1996). ArticleCASPubMed Google Scholar
Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev.11, 1640–1650 (1997). ArticleCASPubMed Google Scholar
Allard, S. et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J.18, 5108–5119 (1999). ArticleCASPubMedPubMed Central Google Scholar
Grant, P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem.274, 5895–5900 (1999). ArticleCASPubMed Google Scholar
Trievel, R. C. et al. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl Acad. Sci. USA96, 8931–8936 (1999). ArticleCASPubMedPubMed Central Google Scholar
Clements, A. et al. Crystal structure of the histone acetyltransferase domain of the human P/CAF transcriptional regulator bound to coenzyme-A. EMBO J.18, 3521–3532 (1999). ArticleCASPubMedPubMed Central Google Scholar
Rojas, J. R. et al. Structure of the Tetrahymena GCN5 bound to coenzyme-A and a histone H3 peptide. Nature401, 93–98 (1999).Revealed the first high-resolution structure of a HAT bound to a histone peptide substrate. ArticleCASPubMed Google Scholar
Lin, Y., Fletcher, C. M., Zhou, J., Allis, C. D. & Wagner, G. Solution structure of the catalytic domain of Tetrahymena GCN5 histone acetyltransferase in complex with coenzyme A. Nature400, 86–89 (1999). ArticleCASPubMed Google Scholar
Yan, Y., Barlev, N. A., Haley, R. H., Berger, S. L. & Marmorstein, R. Crystal structure of yeast Esa1 suggests a unified mechanism of catalysis and substrate binding by histone acetyltransferases. Mol. Cell6, 1195–1205 (2000). ArticleCASPubMed Google Scholar
Dutnall, R. N., Tafrov, S. T., Sternglanz, R. & Ramakrishnan, V. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell94, 427–438 (1998). ArticleCASPubMed Google Scholar
Jeanmougin, F., Wurtz, J. M., LeDouarin, B., Chambon, P. & Losson, R. The bromodomain revisited. Trends Biochem. Sci.22, 151–153 (1997). ArticleCASPubMed Google Scholar
Winston, F. & Allis, C. D. The bromodomain: a chromatin-targeting module? Nature Struct. Biol.6, 601–604 (1999). ArticleCASPubMed Google Scholar
Sterner, D. E. et al. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol.19, 86–98 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kraus, W. L., Manning, E. T. & Kadonaga, J. T. Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol. Cell. Biol.19, 8123–8135 (1999). ArticleCASPubMedPubMed Central Google Scholar
Du, J., Nasir, I., Benton, B. K., Kladde, M. P. & Laurent, B. C. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics150, 987–1005 (1998). CASPubMedPubMed Central Google Scholar
Matangkasombut, O., Buratowski, R. M., Swilling, N. W. & Buratowski, S. Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev14, 951–962 (2000). CASPubMedPubMed Central Google Scholar
Ornaghi, P., Ballario, P., Lena, A. M., Gonzalez, A. & Filetici, P. The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J. Mol. Biol.287, 1–7 (1999). ArticleCASPubMed Google Scholar
Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature399, 491–496 (1999).Provided the first evidence that bromodomains specifically target acetyl-lysine-containing histone substrates. ArticleCASPubMed Google Scholar
Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science288, 1422–1425 (2000). ArticleCASPubMed Google Scholar
Owen, D. J. et al. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J.19, 6141–6149 (2000). ArticleCASPubMedPubMed Central Google Scholar
Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c_-fos_- and c_-jun_-associated nucleosomes upon gene activation. EMBO J.19, 3714–3726 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev.14, 3003–3013 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell5, 905–915 (2000). ArticleCASPubMed Google Scholar
Lo, W. -S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell5, 917–926 (2000).References72and73revealed that Ser10 phosphorylation of histone H3 is functionally linked to histone acetylation at Lys14 and to gene activation of a subset of Gcn5-dependent genes. ArticleCASPubMed Google Scholar
Hsu, J. Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/Aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell102, 279–291 (2000). ArticleCASPubMed Google Scholar
De Souza, C. P., Osmani, A. H., Wu, L. P., Spotts, J. L. & Osmani, S. A. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell102, 293–302 (2000).References74and75indicate that phosphorylation of histone H3 at Ser 10 is mediated by the Ipl1/Aurora kinase and that this activity is functionally linked to chromosome condensation during mitosis. ArticleCASPubMed Google Scholar
Hassan, A. H., Neely, K. E. & Workman, J. L. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell104, 817–827 (2001). ArticleCASPubMed Google Scholar
Cosma, M. P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell97, 299–311 (1999). ArticleCASPubMed Google Scholar
Krebs, J. E., Fry, C. J., Samuels, M. L. & Peterson, C. L. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell102, 587–598 (2000).References76–78indicate a functional link between histone acetylation and chromatin remodelling. ArticleCASPubMed Google Scholar
Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet.29, 577–605 (1995). ArticleCASPubMed Google Scholar
Grunstein, M. Molecular model for telomeric heterochromatin in yeast. Curr. Opin. Cell Biol.9, 383–387 (1997). ArticleCASPubMed Google Scholar
Reuter, G. & Spierer, P. Position effect variegation and chromatin proteins. Bioessays14, 605–612 (1992). ArticleCASPubMed Google Scholar
Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P. & Cranston, G. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev.9, 218–233 (1995). ArticleCASPubMed Google Scholar
Schotta, G. & Reuter, G. Controlled expression of tagged proteins in Drosophila using a new modular P-element vector system. Mol. Gen. Genet.262, 916–920 (2000). ArticleCASPubMed Google Scholar
Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J.13, 3822–3831 (1994). ArticleCASPubMedPubMed Central Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000).Shows that suppressors of variegation gene product, Su(var)3–9, mediates gene silencing through its histone H3 methyltransferase activity. ArticleCASPubMed Google Scholar
Jenuwein, T., Laible, G., Dorn, R. & Reuter, G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci.54, 80–93 (1998). ArticleCASPubMed Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature401, 120–124 (2001). Article Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature401, 116–120 (2001).References87and88indicate that the chromodomain of the heterochromatin-associated protein, HP1, targets the Lys9 of histone H3 for heterochromatin assembly and gene silencing. Article Google Scholar
Eissenberg, J. C. et al. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc. Natl Acad. Sci. USA87, 9923–9927 (1990). ArticleCASPubMedPubMed Central Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). ArticleCASPubMed Google Scholar
Akhtar, A., Zink, D. & Becker, P. B. Chromodomains are protein–RNA interaction modules. Nature407, 405–409 (2000). ArticleCASPubMed Google Scholar
Ball, L. J. et al. Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. EMBO J.16, 2473–2481 (1997).Provides the first atomic structure of a chromodomain. ArticleCASPubMedPubMed Central Google Scholar
Edmondson, S. P., Qiu, L. & Shriver, J. W. Solution structure of the DNA-binding protein Sac7d from the hyperthermophile Sulfolobus acidocaldarius. Biochemistry34, 13289–133304 (1995). ArticleCASPubMed Google Scholar
Baumann, H., Knapp, S., Lundback, T., Ladenstein, R. & Hard, T. Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nature Struct. Biol.1, 808–819 (1994). ArticleCASPubMed Google Scholar
Aasland, R. & Stewart, A. F. The chrome shadow domain, a second chrome domain in heterochromatin-binding protein-1, HP1. Nucleic Acids Res.23, 3168–3173 (1995). ArticleCASPubMedPubMed Central Google Scholar
Fanti, L., Giovinazzo, G., Berloco, M. & Pimpinelli, S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell2, 527–538 (1998). ArticleCASPubMed Google Scholar
Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochomatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell4, 529–540 (1999). ArticleCASPubMed Google Scholar
Smothers, J. F. & Henikoff, S. The HP1 chromo shadow domain binds a consensus peptide pentamer. Curr. Biol.10, 27–30 (2000). ArticleCASPubMed Google Scholar
Brasher, S. V. et al. The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chrome domain dimer. EMBO J.19, 1587–1597 (2000).Provides the first atomic structure of a chromoshadow domain. ArticleCASPubMedPubMed Central Google Scholar
Strahl, B. D., Ohba, R., Cook, R. G. & Allis, C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA96, 14967–14972 (1999).Indicates that histone methylation can be correlated with gene activation. ArticleCASPubMedPubMed Central Google Scholar
Chen, D. et al. Regulation of transcription by a protein methyltransferase. Science284, 2174–2177 (1999). ArticleCASPubMed Google Scholar
Stallcup, M. R. et al. Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. Biochem. Soc. Trans.28, 415–418 (2000). ArticleCASPubMed Google Scholar
Carlson, M. & Laurent, B. C. The SNF/SWI family of global transcriptional activators. Curr. Opin. Cell Biol.6, 396–402 (1994). ArticleCASPubMed Google Scholar
Peterson, C. L. & Tamkun, J. W. The SWI–SNF complex: a chromatin remodeling machine? Trends Biochem. Sci.20, 143–146 (1995). ArticleCASPubMed Google Scholar
Ng, H. H. & Bird, A. Histone deacetylases: silencers for hire. Trends Biochem. Sci.25, 121–126 (2000). ArticleCASPubMed Google Scholar
Kouzarides, T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet. Dev.9, 40–48 (1999). ArticleCASPubMed Google Scholar
Xue, Y. et al. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell2, 851–861 (1998).Describes a transcriptional regulatory complex that has both histone deacetylase and chromatin remodelling activity, indicating a direct link between the histone acetylation status and chromatin remodelling. ArticleCASPubMed Google Scholar
Borden, K. L. RING domains: master builders of molecular scaffolds? J. Mol. Biol.295, 1103–1112 (2000). ArticleCASPubMed Google Scholar
Aasland, R., Gibson, T. J. & Stewart, A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci.20, 56–59 (1995). ArticleCASPubMed Google Scholar
Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol.10, 429–439 (2000). ArticleCASPubMed Google Scholar
Aasland, R., Stewart, A. F. & Gibson, T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional corepressor N-CoR and TFIIIB. Trends Biochem. Sci.21, 87–88 (1996). CASPubMed Google Scholar
Sullivan, S. A., Aravind, L., Makalowski, I., Baxevanis, A. D. & Landsman, D. The histone database: a comprehensive WWW resource for histones and histone fold-containing proteins. Nucleic Acids Res.28, 320–322 (2000). ArticleCASPubMedPubMed Central Google Scholar
Burley, S. K. & Roeder, R. G. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem.65, 769–799 (1996). ArticleCASPubMed Google Scholar
Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature380, 316–322 (1996). ArticleCASPubMed Google Scholar
Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature389, 251–260 (1997).Describes the atomic structure of the nucleosome core particle indicating that, at least in the context of the core particle, the histone tail regions are largely disordered. ArticleCASPubMed Google Scholar