RAS and RHO GTPases in G1-phase cell-cycle regulation (original) (raw)
Sherr, C. J. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res.60, 3689–3695 (2000). CASPubMed Google Scholar
Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature313, 241–243 (1985). First demonstration of the essential role of RAS in mitogen-induced proliferation. ArticleCASPubMed Google Scholar
Stacey, D. W., Feig, L. A. & Gibbs, J. B. Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol. Cell. Biol.11, 4053–4064 (1991). CASPubMedPubMed Central Google Scholar
Feramisco, J. R., Gross, M., Kamata, T., Rosenberg, M. & Sweet, R. W. Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell38, 109–117 (1984). Showed that the introduction of recombinant RAS protein is sufficient for the induction of proliferation. ArticleCASPubMed Google Scholar
Mittnacht, S., Paterson, H., Olson, M. F. & Marshall, C. J. Ras signalling is required for inactivation of the tumour suppressor pRb cell-cycle control protein. Curr. Biol.7, 219–221 (1997). ArticleCASPubMed Google Scholar
Peeper, D. S. et al. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature386, 177–181 (1997). Along with reference 5, provides genetic evidence that inactivation of the retinoblastoma protein is a key function of RAS in cell-cycle regulation. ArticleCASPubMed Google Scholar
D'Abaco, G. M., Hooper, S., Paterson, H. & Marshall, C. J. Loss of Rb overrides the requirement for ERK activity for cell proliferation. J. Cell Sci.115, 4607–4616 (2002). ArticleCASPubMed Google Scholar
Filmus, J. et al. Induction of cyclin D1 overexpression by activated ras. Oncogene9, 3627–3633 (1994). CASPubMed Google Scholar
Hitomi, M. & Stacey, D. W. Cellular ras and cyclin D1 are required during different cell cycle periods in cycling NIH 3T3 cells. Mol. Cell. Biol.19, 4623–4632 (1999). ArticleCASPubMedPubMed Central Google Scholar
Aktas, H., Cai, H. & Cooper, G. M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol. Cell. Biol.17, 3850–3857 (1997). ArticleCASPubMedPubMed Central Google Scholar
Albanese, C. et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem.270, 23589–23597 (1995). ArticleCASPubMed Google Scholar
Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R. & Pouyssegur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem.271, 20608–20616 (1996). ArticleCASPubMed Google Scholar
Winston, J. T., Coats, S. R., Wang, Y. Z. & Pledger, W. J. Regulation of the cell cycle machinery by oncogenic ras. Oncogene12, 127–134 (1996). CASPubMed Google Scholar
Treinies, I., Paterson, H. F., Hooper, S., Wilson, R. & Marshall, C. J. Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal to stimulate DNA synthesis. Mol. Cell. Biol.19, 321–329 (1999). ArticleCASPubMedPubMed Central Google Scholar
Balmanno, K. & Cook, S. J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene18, 3085–3097 (1999). ArticleCASPubMed Google Scholar
Suzuki, T. et al. Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev.16, 1356–1370 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Gille, H. & Downward, J. Multiple ras effector pathways contribute to G(1) cell cycle progression. J. Biol. Chem.274, 22033–22040 (1999). ArticleCASPubMed Google Scholar
Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev.12, 3499–3511 (1998). ArticleCASPubMedPubMed Central Google Scholar
Muise-Helmericks, R. C. et al. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem.273, 29864–29872 (1998). ArticleCASPubMed Google Scholar
Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature411, 1017–1021 (2001). ArticleCASPubMed Google Scholar
Takuwa, N. & Takuwa, Y. Ras activity late in G1 phase required for p27kip1 downregulation, passage through the restriction point, and entry into S phase in growth factor-stimulated NIH 3T3 fibroblasts. Mol. Cell. Biol.17, 5348–5358 (1997). ArticleCASPubMedPubMed Central Google Scholar
Weber, J. D., Hu, W., Jefcoat, S. C. Jr., Raben, D. M. & Baldassare, J. J. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J. Biol. Chem.272, 32966–32971 (1997). ArticleCASPubMed Google Scholar
Delmas, C. et al. The p42/p44 mitogen-activated protein kinase activation triggers p27Kip1 degradation independently of CDK2/cyclin E in NIH 3T3 cells. J. Biol. Chem.276, 34958–34965 (2001). ArticleCASPubMed Google Scholar
Rivard, N., Boucher, M. J., Asselin, C. & L'Allemain, G. MAP kinase cascade is required for p27 downregulation and S phase entry in fibroblasts and epithelial cells. Am. J. Physiol.277, C652–C664 (1999). ArticleCASPubMed Google Scholar
Vlach, J., Hennecke, S. & Amati, B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J.16, 5334–5344 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sheaff, R. J., Groudine, M., Gordon, M., Roberts, J. M. & Clurman, B. E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev.11, 1464–1478 (1997). CASPubMed Google Scholar
Malek, N. P. et al. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature413, 323–327 (2001). ArticleCASPubMed Google Scholar
Mamillapalli, R. et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27KIP1 through the ubiquitin E3 ligase SCFSKP2. Curr. Biol.11, 263–267 (2001). ArticleCASPubMed Google Scholar
Medema, R. H., Kops, G. J., Bos, J. L. & Burgering, B. M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature404, 782–787 (2000). Showed that RAS-induced transcriptional repression of p27KIP1occurs through the effects of AKT/PKB on forkhead transcription factors. ArticleCASPubMed Google Scholar
Kops, G. J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature398, 630–634 (1999). ArticleCASPubMed Google Scholar
de Ruiter, N. D., Burgering, B. M. & Bos, J. L. Regulation of the Forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol. Cell. Biol.21, 8225–8235 (2001). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y., Martindale, J. L., Gorospe, M. & Holbrook, N. J. Regulation of p21WAF1/CIP1 expression through mitogen-activated protein kinase signaling pathway. Cancer Res.56, 31–35 (1996). CASPubMed Google Scholar
Bottazzi, M. E., Zhu, X., Bohmer, R. M. & Assoian, R. K. Regulation of p21cip1 expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. J. Cell Biol.146, 1255–1264 (1999). ArticleCASPubMedPubMed Central Google Scholar
LaBaer, J. et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev.11, 847–862 (1997). ArticleCASPubMed Google Scholar
Cheng, M. et al. The p21Cip1 and p27Kip1 CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J.18, 1571–1583 (1999). Along with reference 34, describes the function of p21 and p27 as assembly factors for cyclin–CDK complexes. ArticleCASPubMedPubMed Central Google Scholar
Alt, J. R., Gladden, A. B. & Diehl, J. A. p21Cip1 Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J. Biol. Chem.277, 8517–8523 (2002). ArticleCASPubMed Google Scholar
Rajasekhar, V. K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell12, 889–901 (2003). ArticleCASPubMed Google Scholar
Hidalgo, M. & Rowinsky, E. K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene19, 6680–6686 (2000). ArticleCASPubMed Google Scholar
Hashemolhosseini, S. et al. Rapamycin inhibition of the G1 to S transition is mediated by effects on cyclin D1 mRNA and protein stability. J. Biol. Chem.273, 14424–14429 (1998). ArticleCASPubMed Google Scholar
Kawamata, S., Sakaida, H., Hori, T., Maeda, M. & Uchiyama, T. The upregulation of p27Kip1 by rapamycin results in G1 arrest in exponentially growing T-cell lines. Blood91, 561–569 (1998). ArticleCASPubMed Google Scholar
Nelsen, C. J., Rickheim, D. G., Tucker, M. M., Hansen, L. K. & Albrecht, J. H. Evidence that cyclin D1 mediates both growth and proliferation downstream of TOR in hepatocytes. J. Biol. Chem.278, 3656–3663 (2003). ArticleCASPubMed Google Scholar
Nourse, J. et al. Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin. Nature372, 570–573 (1994). ArticleCASPubMed Google Scholar
Jiang, H., Coleman, J., Miskimins, R. & Miskimins, W. K. Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF7 breast cancer cells. Cancer Cell Int.3, 2 (2003). ArticlePubMedPubMed Central Google Scholar
Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L. & Sonenberg, N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl Acad. Sci. USA93, 1065–1070 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lane, H. A., Fernandez, A., Lamb, N. J. & Thomas, G. p70S6K function is essential for G1 progression. Nature363, 170–172 (1993). Demonstrated the crucial role of S6K, and therefore of the regulation of protein translation, in cell-cycle progression. ArticleCASPubMed Google Scholar
Dufner, A. & Thomas, G. Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res.253, 100–109 (1999). ArticleCASPubMed Google Scholar
Kleijn, M., Scheper, G. C., Voorma, H. O. & Thomas, A. A. Regulation of translation initiation factors by signal transduction. Eur. J. Biochem.253, 531–544 (1998). ArticleCASPubMed Google Scholar
Potter, C. J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell105, 357–368 (2001). ArticleCASPubMed Google Scholar
Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E. & Hariharan, I. K. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell105, 345–355 (2001). Together with references 48 and 49, revealed the roles of TSC1 and TSC2 in cell growth and proliferation. ArticleCASPubMed Google Scholar
Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid–TOR signalling. Nature Cell Biol.4, 699–704 (2002). ArticleCASPubMed Google Scholar
Goncharova, E. A. et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J. Biol. Chem.277, 30958–30967 (2002). ArticleCASPubMed Google Scholar
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K. L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol.4, 648–657 (2002). ArticleCASPubMed Google Scholar
Jaeschke, A. et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J. Cell Biol.159, 217–224 (2002). ArticleCASPubMedPubMed Central Google Scholar
Tee, A. R. et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl Acad. Sci. USA99, 13571–13576 (2002). ArticleCASPubMedPubMed Central Google Scholar
Manning, B. D., Tee, A. R., Logsdon, M. N., Blenis, J. & Cantley, L. C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell10, 151–162 (2002). References 51–56, published in quick succession, establish the involvement of the TSC complex in the regulation of S6K through TOR. ArticleCASPubMed Google Scholar
Soucek, T., Yeung, R. S. & Hengstschlager, M. Inactivation of the cyclin-dependent kinase inhibitor p27 upon loss of the tuberous sclerosis complex gene-2. Proc. Natl Acad. Sci. USA95, 15653–15658 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ito, N. & Rubin, G. M. gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell96, 529–539 (1999). ArticleCASPubMed Google Scholar
Benvenuto, G. et al. The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene19, 6306–6316 (2000). ArticleCASPubMed Google Scholar
Herbert, T. P., Tee, A. R. & Proud, C. G. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J. Biol. Chem.277, 11591–11596 (2002). ArticleCASPubMed Google Scholar
von Manteuffel, S. R., Gingras, A. C., Ming, X. F., Sonenberg, N. & Thomas, G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA93, 4076–4080 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lin, T. A., Kong, X., Saltiel, A. R., Blackshear, P. J. & Lawrence, J. C. Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J. Biol. Chem.270, 18531–18538 (1995). ArticleCASPubMed Google Scholar
Rolli-Derkinderen, M. et al. ERK and p38 inhibit the expression of 4E-BP1 repressor of translation through induction of Egr-1. J. Biol. Chem.278, 18859–18867 (2003). ArticleCASPubMed Google Scholar
Ming, X. F. et al. Activation of p70/p85 S6 kinase by a pathway independent of p21ras. Nature371, 426–429 (1994). ArticleCASPubMed Google Scholar
Lehman, J. A., Calvo, V. & Gomez-Cambronero, J. Mechanism of ribosomal p70S6 kinase activation by granulocyte macrophage colony-stimulating factor in neutrophils: cooperation of a MEK-related, THR421/SER424 kinase and a rapamycin-sensitive, m-TOR-related THR389 kinase. J. Biol. Chem.278, 28130–28138 (2003). ArticleCASPubMed Google Scholar
Martin, K. A., Schalm, S. S., Romanelli, A., Keon, K. L. & Blenis, J. Ribosomal S6 kinase 2 inhibition by a potent C-terminal repressor domain is relieved by mitogen-activated protein-extracellular signal-regulated kinase kinase-regulated phosphorylation. J. Biol. Chem.276, 7892–7898 (2001). ArticleCASPubMed Google Scholar
Tee, A. R., Anjum, R. & Blenis, J. Inactivation of the tuberous sclerosis complex-1 and-2 gene products occurs by phosphoinositide 3-kinase (PI3K)/Akt-dependent and-independent phosphorylation of tuberin. J. Biol. Chem.278, 37288–37296 (2003). ArticleCASPubMed Google Scholar
Basu, T. N. et al. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature356, 713–715 (1992). ArticleCASPubMed Google Scholar
Engers, R. et al. Tiam1 mutations in human renal-cell carcinomas. Int. J. Cancer88, 369–376 (2000). ArticleCASPubMed Google Scholar
The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell75, 1305–1315 (1993).
Wienecke, R., Konig, A. & DeClue, J. E. Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J. Biol. Chem.270, 16409–16414 (1995). ArticleCASPubMed Google Scholar
Xiao, G. H., Shoarinejad, F., Jin, F., Golemis, E. A. & Yeung, R. S. The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J. Biol. Chem.272, 6097–6100 (1997). ArticleCASPubMed Google Scholar
Castro, A. F., Rebhun, J. F., Clark, G. G. & Quilliam, L. A. Rheb binds TSC2 and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J. Biol. Chem.278, 32493–32496 (2003). ArticleCASPubMed Google Scholar
Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell11, 1457–1466 (2003). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biol.5, 578–581 (2003). ArticleCASPubMed Google Scholar
Saucedo, L. J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biol.5, 566–571 (2003). ArticleCASPubMed Google Scholar
Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nature Cell Biol.5, 559–566 (2003). References 74–77 put RHEB into the pathway of TOR–S6K regulation by the TSC complex. ArticleCASPubMed Google Scholar
Yee, W. M. & Worley, P. F. Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol. Cell. Biol.17, 921–933 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gromov, P. S., Madsen, P. & Tomerup, N., Celis, J. E. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett.377, 221–226 (1995). ArticleCASPubMed Google Scholar
Mach, K. E., Furge, K. A. & Albright, C. F. Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics155, 611–622 (2000). ArticleCASPubMedPubMed Central Google Scholar
Patel, P. H. et al. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J. Cell Sci.116, 3601–3610 (2003). ArticleCASPubMed Google Scholar
Tee, A. R., Manning, B. D., Roux, P. P., Cantley, L. C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol.13, 1259–1268 (2003). ArticleCASPubMed Google Scholar
Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev.17, 1829–1834 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dan, H. C. et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem.277, 35364–35370 (2002). ArticleCASPubMed Google Scholar
Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C. & Neufeld, T. P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev.14, 2712–2724 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mak, B. C., Takemaru, K., Kenerson, H. L., Moon, R. T. & Yeung, R. S. The tuberin–hamartin complex negatively regulates β-catenin signaling activity. J. Biol. Chem.278, 5947–5951 (2003). ArticleCASPubMed Google Scholar
Urano, T., Emkey, R. & Feig, L. A. Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation. EMBO J.15, 810–816 (1996). ArticleCASPubMedPubMed Central Google Scholar
White, M. A., Vale, T., Camonis, J. H., Schaefer, E. & Wigler, M. H. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem.271, 16439–16442 (1996). Along with reference 87, this paper revealed the crucial contribution of RAL in RAS signalling that leads to cell proliferation. ArticleCASPubMed Google Scholar
Rosario, M., Paterson, H. F. & Marshall, C. J. Activation of the Ral and phosphatidylinositol 3′ kinase signaling pathways by the ras-related protein TC21. Mol. Cell. Biol.21, 3750–3762 (2001). ArticleCASPubMedPubMed Central Google Scholar
Henry, D. O. et al. Ral GTPases contribute to regulation of cyclin D1 through activation of NF-κB. Mol. Cell. Biol.20, 8084–8092 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chien, Y. & White, M. A. RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep.4, 800–806 (2003). ArticleCASPubMedPubMed Central Google Scholar
Self, A. J., Caron, E., Paterson, H. F. & Hall, A. Analysis of R-Ras signalling pathways. J. Cell Sci.114, 1357–1366 (2001). ArticleCASPubMed Google Scholar
Rosario, M., Paterson, H. F. & Marshall, C. J. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. EMBO J.18, 1270–1279 (1999). ArticleCASPubMedPubMed Central Google Scholar
Marte, B. M., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. & Downward, J. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr. Biol.7, 63–70 (1997). ArticleCASPubMed Google Scholar
Kimmelman, A. C., Osada, M. & Chan, A. M. R-Ras3, a brain-specific Ras-related protein, activates Akt and promotes cell survival in PC12 cells. Oncogene19, 2014–2022 (2000). ArticleCASPubMed Google Scholar
Graham, S. M. et al. Aberrant function of the Ras-related protein TC21/R-Ras2 triggers malignant transformation. Mol. Cell. Biol.14, 4108–4115 (1994). CASPubMedPubMed Central Google Scholar
Yamamoto, M. et al. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene8, 1449–1455 (1993). CASPubMed Google Scholar
Olson, M. F., Ashworth, A. & Hall, A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science269, 1270–1272 (1995). Along with reference 97, demonstrates the essential role of Rho GTPases in cell proliferation. ArticleCASPubMed Google Scholar
Olson, M. F., Paterson, H. F. & Marshall, C. J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature394, 295–299 (1998). Showed that Rho contributes to RAS-induced cell-cycle progression through repression of p21CIP1. ArticleCASPubMed Google Scholar
Lloyd, A. C. et al. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev.11, 663–677 (1997). ArticleCASPubMed Google Scholar
Pumiglia, K. M. & Decker, S. J. Cell cycle arrest mediated by the MEK/mitogen-activated protein kinase pathway. Proc. Natl Acad. Sci. USA94, 448–452 (1997). ArticleCASPubMedPubMed Central Google Scholar
Sewing, A., Wiseman, B., Lloyd, A. C. & Land, H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol.17, 5588–5597 (1997). ArticleCASPubMedPubMed Central Google Scholar
Woods, D. et al. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol. Cell. Biol.17, 5598–5611 (1997). References 100–103 showed that the intensity of signalling through the Raf–MEK–ERK/MAPK pathway determines whether cells proliferate or undergo p21-mediated cell-cycle arrest. ArticleCASPubMedPubMed Central Google Scholar
Auer, K. L. et al. Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21 _Cip-1/WAF1_-null mice, but not in hepatocytes from p16 _INK4a_-null mice. Biochem. J.336, 551–560 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zuckerbraun, B. S., Shapiro, R. A., Billiar, T. R. & Tzeng, E. RhoA influences the nuclear localization of extracellular signal-regulated kinases to modulate p21Waf/Cip1 expression. Circulation108, 876–881 (2003). ArticleCASPubMed Google Scholar
Lai, J. M., Wu, S., Huang, D. Y. & Chang, Z. F. Cytosolic retention of phosphorylated extracellular signal-regulated kinase and a Rho-associated kinase-mediated signal impair expression of p21(Cip1/Waf1) in phorbol 12-myristate-13-acetate-induced apoptotic cells. Mol. Cell. Biol.22, 7581–7592 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sahai, E., Ishizaki, T., Narumiya, S. & Treisman, R. Transformation mediated by RhoA requires activity of ROCK kinases. Curr. Biol.9, 136–145 (1999). ArticleCASPubMed Google Scholar
Sahai, E., Olson, M. F. & Marshall, C. J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J.20, 755–766 (2001). ArticleCASPubMedPubMed Central Google Scholar
Roovers, K. & Assoian, R. K. Effects of rho kinase and actin stress fibers on sustained extracellular signal-regulated kinase activity and activation of G(1) phase cyclin-dependent kinases. Mol. Cell. Biol.23, 4283–4294 (2003). ArticleCASPubMedPubMed Central Google Scholar
Noren, N. K., Niessen, C. M., Gumbiner, B. M. & Burridge, K. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem.276, 33305–33308 (2001). ArticleCASPubMed Google Scholar
Bao, W., Thullberg, M., Zhang, H., Onischenko, A. & Stromblad, S. Cell attachment to the extracellular matrix induces proteasomal degradation of p21CIP1 via Cdc42/Rac1 signaling. Mol. Cell. Biol.22, 4587–4597 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hirai, A. et al. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27Kip1 and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J. Biol. Chem.272, 13–16 (1997). ArticleCASPubMed Google Scholar
Laufs, U., Marra, D., Node, K. & Liao, J. K. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27(Kip1). J. Biol. Chem.274, 21926–21931 (1999). ArticleCASPubMed Google Scholar
Hu, Z. Y., Madamanchi, N. R. & Rao, G. N. cAMP inhibits linoleic acid-induced growth by antagonizing p27kip1 depletion, but not interfering with the extracellular signal-regulated kinase or AP-1 activities. Biochim. Biophys. Acta1405, 139–146 (1998). ArticleCASPubMed Google Scholar
Hu, W., Bellone, C. J. & Baldassare, J. J. RhoA stimulates p27Kip degradation through its regulation of cyclin E/CDK2 activity. J. Biol. Chem.274, 3396–3401 (1999). ArticleCASPubMed Google Scholar
Adnane, J., Bizouarn, F. A., Qian, Y., Hamilton, A. D. & Sebti, S. M. p21WAF1/CIP1 is upregulated by the geranylgeranyltransferase I inhibitor GGTI-298 through a transforming growth factor β- and Sp1- responsive element: involvement of the small GTPase rhoA. Mol. Cell. Biol.18, 6962–6970 (1998). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, T. et al. Activation of cyclin-dependent kinase 2 (Cdk2) in growth-stimulated rat astrocytes. Geranylgeranylated Rho small GTPase(s) are essential for the induction of cyclin E gene expression. J. Biol. Chem.273, 26772–26778 (1998). ArticleCASPubMed Google Scholar
Vidal, A., Millard, S. S., Miller, J. P. & Koff, A. Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. J. Biol. Chem.277, 16433–16440 (2002). ArticleCASPubMed Google Scholar
Roovers, K., Davey, G., Zhu, X., Bottazzi, M. E. & Assoian, R. K. α5β1 integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol. Biol. Cell10, 3197–3204 (1999). ArticleCASPubMedPubMed Central Google Scholar
Welsh, C. F. et al. Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature Cell Biol.3, 950–957 (2001). Along with references 119 and 133, this paper revealed the contribution of integrin signalling through Rho GTPases to the elevation of cyclin-D1 levels. ArticleCASPubMed Google Scholar
Roovers, K., Klein, E. A., Castagnino, P. & Assoian, R. K. Nuclear translocation of LIM kinase mediates Rho–Rho kinase regulation of cyclin D1 expression. Dev. Cell5, 273–284 (2003). ArticleCASPubMed Google Scholar
Joyce, D. et al. Integration of Rac-dependent regulation of cyclin D1 transcription through a nuclear factor-κB-dependent pathway. J. Biol. Chem.274, 25245–25249 (1999). ArticleCASPubMed Google Scholar
Westwick, J. K. et al. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol.17, 1324–1335 (1997). ArticleCASPubMedPubMed Central Google Scholar
Gjoerup, O., Lukas, J., Bartek, J. & Willumsen, B. M. Rac and Cdc42 are potent stimulators of E2F-dependent transcription capable of promoting retinoblastoma susceptibility gene product hyperphosphorylation. J. Biol. Chem.273, 18812–18818 (1998). ArticleCASPubMed Google Scholar
Page, K. et al. Characterization of a Rac1 signaling pathway to cyclin D(1) expression in airway smooth muscle cells. J. Biol. Chem.274, 22065–22071 (1999). ArticleCASPubMed Google Scholar
Cammarano, M. S. & Minden, A. Dbl and the Rho GTPases activate NFκB by IκB kinase (IKK)-dependent and IKK-independent pathways. J. Biol. Chem.276, 25876–25882 (2001). ArticleCASPubMed Google Scholar
Murphy, G. A. et al. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Oncogene18, 3831–3845 (1999). ArticleCASPubMed Google Scholar
Murphy, G. A. et al. Signaling mediated by the closely related mammalian Rho family GTPases TC10 and Cdc42 suggests distinct functional pathways. Cell Growth Differ.12, 157–167 (2001). CASPubMed Google Scholar
Romanelli, A., Martin, K. A., Toker, A. & Blenis, J. p70 S6 kinase is regulated by protein kinase Cζ and participates in a phosphoinositide 3-kinase-regulated signalling complex. Mol. Cell. Biol.19, 2921–2928 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chou, M. M. & Blenis, J. The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1. Cell85, 573–583 (1996). ArticleCASPubMed Google Scholar
Lambert, J. M., Karnoub, A. E., Graves, L. M., Campbell, S. L. & Der, C. J. Role of MLK3-mediated activation of p70 S6 kinase in Rac1 transformation. J. Biol. Chem.277, 4770–4777 (2002). ArticleCASPubMed Google Scholar
Chou, M. M., Masuda-Robens, J. M. & Gupta, M. L. Cdc42 promotes G1 progression through p70S6k-mediated induction of cyclin E expression. J. Biol. Chem.278, 35241–35247 (2003). ArticleCASPubMed Google Scholar
Mettouchi, A. et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol. Cell8, 115–127 (2001). ArticleCASPubMed Google Scholar
Miyoshi, J., Kagimoto, M., Soeda, E. & Sakaki, Y. The human c-Ha-ras2 is a processed pseudogene inactivated by numerous base substitutions. Nucleic Acids Res.12, 1821–1828 (1984). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K., Mitsui, K. & Yamanaka, S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature423, 541–545 (2003). ArticleCASPubMed Google Scholar
Jirmanova, L., Afanassieff, M., Gobert-Gosse, S., Markossian, S. & Savatier, P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene21, 5515–5528 (2002). ArticleCASPubMed Google Scholar