Regulatory diversity among metazoan co-activator complexes (original) (raw)

References

  1. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).
    Article CAS PubMed Google Scholar
  2. Gruber, T. M. & Gross, C. A. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57, 441–466 (2003).
    Article CAS PubMed Google Scholar
  3. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).
    Article CAS PubMed Google Scholar
  4. Lemon, B. D. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569 (2000).
    Article CAS PubMed Google Scholar
  5. Näär, A. M., Lemon, B. D. & Tjian, R. Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475–501 (2001).
    Article PubMed Google Scholar
  6. Roth, S. Y., Denu, J. M. & Allis, C. D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).
    Article CAS PubMed Google Scholar
  7. Thompson, C. M., Koleske, A. J., Chao, D. M. & Young, R. A. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361–1375 (1993).
    Article CAS PubMed Google Scholar
  8. Hengartner, C. J. et al. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9, 897–910 (1995).
    Article CAS PubMed Google Scholar
  9. Kim, Y., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).
    Article CAS PubMed Google Scholar
  10. Malik, S. & Roeder, R. G. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci. 25, 277–283 (2000).
    Article CAS PubMed Google Scholar
  11. Mittler, G., Kremmer, E., Timmers, H. T. & Meisterernst, M. Novel critical roles of a human mediator complex for basal RNA polymerase II transcription. EMBO Rep. 2, 808–813 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  12. Davidson, E. H. Genomic Regulatory Systems: Development and Evolution (Academic Press, New York, 2001).
    Google Scholar
  13. Rachez, C. & Freedman, L. P. Mediator complexes and transcription. Curr. Opin. Cell Biol. 13, 274–280 (2001).
    Article CAS PubMed Google Scholar
  14. Taatjes, D. J., Näär, A. M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).
    Article CAS PubMed Google Scholar
  15. Liu, Y., Ranish, J. A., Aebersold, R. & Hahn, S. Yeast nuclear extract contains two major forms of RNA polymerase II mediator complexes. J. Biol. Chem. 276, 7169–7175 (2001).
    Article CAS PubMed Google Scholar
  16. Francis, N. J. & Kingston, R. E. Mechanisms of transcriptional memory. Nature Rev. Mol. Cell Biol. 2, 409–421 (2001).
    Article CAS Google Scholar
  17. Hutchison, C. J. Lamins: building blocks or regulators of gene expression? Nature Rev. Mol. Cell Biol. 3, 848–858 (2002).
    Article CAS Google Scholar
  18. Kadonaga, J. T. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004).
    Article CAS PubMed Google Scholar
  19. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).
    Article CAS PubMed Google Scholar
  20. Lemon, B. D., Inouye, C., King, D. S. & Tjian, R. Selectivity of chromatin-remodeling cofactors for ligand-activated transcription. Nature 414, 924–928 (2001).
    Article CAS PubMed Google Scholar
  21. Brand, M., Yamamoto, K., Staub, A. & Tora, L. Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J. Biol. Chem. 274, 18285–18289 (1999).
    Article CAS PubMed Google Scholar
  22. Wieczorek, E., Brand, M., Jacq, X. & Tora, L. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature 393, 187–191 (1998).
    Article CAS PubMed Google Scholar
  23. Brand, M. et al. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J. 20, 3187–3196 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  24. Hardy, S. et al. TATA-binding protein-free TAF-containing complex (TFTC) and p300 are both required for efficient transcriptional activation. J. Biol. Chem. 277, 32875–32882 (2002).
    Article CAS PubMed Google Scholar
  25. Ogryzko, V. V. et al. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94, 35–44 (1998).
    Article CAS PubMed Google Scholar
  26. Martinez, E. Multi-protein complexes in eukaryotic gene transcription. Plant Mol. Biol. 50, 925–947 (2002).
    Article CAS PubMed Google Scholar
  27. Mo, X., Kowenz-Leutz, E., Xu, H. & Leutz, A. Ras induces mediator complex exchange on C/EBPβ. Mol. Cell 13, 241–250 (2004).
    Article CAS PubMed Google Scholar
  28. Borggrefe, T., Davis, R., Erdjument-Bromage, H., Tempst, P. & Kornberg, R. D. A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J. Biol. Chem. 277, 44202–44207 (2002).
    Article CAS PubMed Google Scholar
  29. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).
    Article CAS PubMed Google Scholar
  30. Zhou, R. et al. SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Res. 30, 3245–3452 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  31. Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407, 102–106 (2000).
    Article CAS PubMed Google Scholar
  32. Kuchin, S. & Carlson, M. Functional relationships of Srb10–Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6–Tup1. Mol. Cell Biol. 18, 1163–1171 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  33. Song, W. & Carlson, M. Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J. 17, 5757–5765 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  34. Zaman, Z., Ansari, A. Z., Koh, S. S., Young, R. & Ptashne, M. Interaction of a transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role in repression. Proc. Natl Acad. Sci. USA 98, 2550–2554 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  35. Zhang, H. & Emmons, S. W. A C. elegans mediator protein confers regulatory selectivity on lineage-specific expression of a transcription factor gene. Genes Dev. 14, 2161–2172 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  36. Näär, A. M., Taatjes, D. J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 16, 1339–1344 (2002).
    Article PubMed PubMed Central CAS Google Scholar
  37. Brower, C. S. et al. Mammalian mediator subunit mMed8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc. Natl Acad. Sci. USA 99, 10353–10358 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  38. Chi, Y. et al. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15, 1078–1092 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  39. Nelson, C., Goto, S., Lund, K., Hung, W. & Sadowski, I. Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature 421, 187–190 (2003).
    Article CAS PubMed Google Scholar
  40. Song, A., Wang, Q., Goebl, M. G. & Harrington, M. A. Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol. Cell. Biol. 18, 4994–4999 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  41. Hochheimer, A. & Tjian, R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev. 17, 1309–1320 (2003).
    Article CAS PubMed Google Scholar
  42. Freiman, R. N. et al. Requirement of tissue-selective TBP-associated factor TAFII105 in ovarian development. Science 293, 2084–2087 (2001).
    Article CAS PubMed Google Scholar
  43. Hiller, M. A., Lin, T. Y., Wood, C. & Fuller, M. T. Developmental regulation of transcription by a tissue-specific TAF homolog. Genes Dev. 15, 1021–1030 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  44. Hochheimer, A., Zhou, S., Zheng, S., Holmes, M. C. & Tjian, R. TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila. Nature 420, 439–445 (2002).
    Article CAS PubMed Google Scholar
  45. Holmes, M. C. & Tjian, R. Promoter-selective properties of the TBP-related factor TRF1. Science 288, 867–870 (2000).
    Article CAS PubMed Google Scholar
  46. Kaltenbach, L., Horner, M. A., Rothman, J. H. & Mango, S. E. The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis. Mol. Cell 6, 705–713 (2000).
    Article CAS PubMed Google Scholar
  47. Martianov, I. et al. Late arrest of spermiogenesis and germ cell apoptosis in mice lacking the TBP-like TLF/TRF2 gene. Mol. Cell 7, 509–515 (2001).
    Article CAS PubMed Google Scholar
  48. Veenstra, G. J., Weeks, D. L. & Wolffe, A. P. Distinct roles for TBP and TBP-like factor in early embryonic gene transcription in Xenopus. Science 290, 2312–2315 (2000).
    Article CAS PubMed Google Scholar
  49. Zhang, D., Penttila, T. L., Morris, P. L. & Roeder, R. G. Spermiogenesis deficiency in mice lacking the Trf2 gene. Science 292, 1153–1155 (2001).
    Article CAS PubMed Google Scholar
  50. Olave, I., Wang, W., Xue, Y., Kuo, A. & Crabtree, G. R. Identification of a polymorphic, neuron-specific chromatin remodeling complex. Genes Dev. 16, 2509–2517 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  51. Berti, L. et al. Isolation and characterization of a novel gene from the DiGeorge chromosomal region that encodes for a mediator subunit. Genomics 74, 320–332 (2001).
    Article CAS PubMed Google Scholar
  52. Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).
    Article CAS PubMed Google Scholar
  53. Yuan, C., Ito, M., Fondell, J. D., Fu, Z. & Roeder, R. G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl Acad. Sci. USA 95, 7939–7944 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  54. Ito, M., Yuan, C. X., Okano, H. J., Darnell, R. B. & Roeder, R. G. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol. Cell 5, 683–693 (2000).
    Article CAS PubMed Google Scholar
  55. Ge, K. et al. Transcription coactivator TRAP220 is required for PPARγ2-stimulated adipogenesis. Nature 417, 563–567 (2002).
    Article CAS PubMed Google Scholar
  56. Kato, Y., Habas, R., Katsuyama, Y., Naar, A. & He, X. A component of the ARC/Mediator complex required for TGFβ/Nodal signalling. Nature 418, 641–646 (2002).
    Article CAS PubMed Google Scholar
  57. Stevens, J. L. et al. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296, 755–758 (2002).
    Article CAS PubMed Google Scholar
  58. Ito, M., Okano, H. J., Darnell, R. B. & Roeder, R. G. The TRAP100 component of the TRAP/Mediator complex is essential in broad transcriptional events and development. EMBO J. 21, 3464–3475 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  59. Albright, S. R. & Tjian, R. TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242, 1–13 (2000).
    Article CAS PubMed Google Scholar
  60. Kadam, S. & Emerson, B. M. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol. Cell 11, 377–389 (2003).
    Article CAS PubMed Google Scholar
  61. Kadam, S. et al. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 14, 2441–2451 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  62. Thut, C. J., Chen, J. L., Klemm, R. & Tjian, R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267, 100–104 (1995).
    Article CAS PubMed Google Scholar
  63. Chen, J. L., Attardi, L. D., Verrijzer, C. P., Yokomori, K. & Tjian, R. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79, 93–105 (1994).
    Article CAS PubMed Google Scholar
  64. Butler, J. E. & Kadonaga, J. T. Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev. 15, 2515–2519 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  65. Ohtsuki, S., Levine, M. & Cai, H. N. Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev. 12, 547–556 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  66. Burke, T. W. & Kadonaga, J. T. The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev. 11, 3020–3031 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  67. Chalkley, G. E. & Verrijzer, C. P. DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250–TAF(II)150 complex recognizes the initiator. EMBO J. 18, 4835–4845 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  68. Kaufman, J., Ahrens, K., Koop, R., Smale, S. T. & Muller, R. CIF150, a human cofactor for transcription factor IID-dependent initiator function. Mol. Cell. Biol. 18, 233–239 (1998).
    Article Google Scholar
  69. Verrijzer, C. P., Chen, J. L., Yokomori, K. & Tjian, R. Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell 81, 1115–1125 (1995).
    Article CAS PubMed Google Scholar
  70. Hansen, S. K. & Tjian, R. TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82, 565–575 (1995).
    Article CAS PubMed Google Scholar
  71. Davis, J. A., Takagi, Y., Kornberg, R. D. & Asturias, F. A. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10, 409–415 (2002).
    Article CAS PubMed Google Scholar
  72. Johnson, K. M., Wang, J., Smallwood, A., Arayata, C. & Carey, M. TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev. 16, 1852–1863 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  73. Borggrefe, T., Davis, R., Bareket-Samish, A. & Kornberg, R. D. Quantitation of the RNA polymerase II transcription machinery in yeast. J. Biol. Chem. 276, 47150–47153 (2001).
    Article CAS PubMed Google Scholar
  74. Kimura, H., Tao, Y., Roeder, R. G. & Cook, P. R. Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol. Cell. Biol. 19, 5383–5392 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  75. Chi, T. & Carey, M. Assembly of the isomerized TFIIA–TFIID–TATA ternary complex is necessary and sufficient for gene activation. Genes Dev. 10, 2540–2550 (1996).
    Article CAS PubMed Google Scholar
  76. Guermah, M., Malik, S. & Roeder, R. G. Involvement of TFIID and USA components in transcriptional activation of the human immunodeficiency virus promoter by NF-κB and Sp1. Mol. Cell. Biol. 18, 3234–3244 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  77. Kotani, T. et al. Identification of highly conserved amino-terminal segments of dTAFII230 and yTAFII145 that are functionally interchangeable for inhibiting TBP–DNA interactions in vitro and in promoting yeast cell growth in vivo. J. Biol. Chem. 273, 32254–32264 (1998).
    Article CAS PubMed Google Scholar
  78. Cosma, M. P. Ordered recruitment: gene-specific mechanism of transcription activation. Mol. Cell 10, 227–236 (2002).
    Article CAS PubMed Google Scholar
  79. Lewis, B. A. & Reinberg, D. The Mediator coactivator complex: functional and physical roles in transcriptional regulation. J. Cell Sci. 116, 3667–3675 (2003).
    Article CAS PubMed Google Scholar
  80. Lee, D. K., Kim, S. & Lis, J. T. Different upstream transcriptional activators have distinct coactivator requirements. Genes Dev. 13, 2934–2939 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  81. West, R. W. Jr., Kruger, B., Thomas, S., Ma, J. & Milgrom, E. RLR1 (THO2), required for expressing lacZ fusions in yeast, is conserved from yeast to humans and is a suppressor of SIN4. Gene 243, 195–205 (2000).
    Article CAS PubMed Google Scholar
  82. Gwack, Y. et al. Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol. Cell. Biol. 23, 2055–2067 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  83. Burakov, D., Wong, C. W., Rachez, C., Cheskis, B. J. & Freedman, L. P. Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J. Biol. Chem. 275, 20928–20934 (2000).
    Article CAS PubMed Google Scholar
  84. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  85. Hittelman, A. B., Burakov, D., Iniguez-Lluhi, J. A., Freedman, L. P. & Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1 associated proteins. EMBO J. 18, 5380–5388 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  86. Malik, S., Wallberg, A. E., Kang, Y. K. & Roeder, R. G. TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol. Cell. Biol. 22, 5626–5637 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  87. Frade, R., Balbo, M. & Barel, M. RB18A, whose gene is localized on chromosome 17q12-q21.1, regulates in vivo p53 transactivating activity. Cancer Res. 60, 6585–6589 (2000).
    CAS PubMed Google Scholar
  88. Lau, J. F., Nusinzon, I., Burakov, D., Freedman, L. P. & Horvath, C. M. Role of metazoan Mediator proteins in interferon-responsive transcription. Mol. Cell. Biol. 23, 620–628 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  89. Asada, S. et al. External control of Her2 expression and cancer cell growth by targeting a Ras-linked coactivator. Proc. Natl Acad. Sci. USA 99, 12747–12752 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  90. Mittler, G. et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22, 6494–6504 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  91. Yang, F., DeBeaumont R., Zhou S. & Näär A. M. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl Acad. Sci. USA 101, 2339–2344 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  92. Park, J. M., Werner, J., Kim, J. M., Lis, J. T. & Kim, Y. J. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol. Cell 8, 9–19 (2001).
    Article CAS PubMed Google Scholar
  93. Park, J. M. et al. Signal-induced transcriptional activation by Dif requires the dTRAP80 Mediator module. Mol. Cell. Biol. 23, 1358–1367 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  94. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).
    Article CAS PubMed Google Scholar
  95. Sato, S. et al. Identification of mammalian mediator subunits with similarities to yeast mediator subunits Srb5, Srb6, Med11, and Rox3. J. Biol. Chem. 278, 15123–15127 (2003).
    Article CAS PubMed Google Scholar

Download references