Making sense of it all: bacterial chemotaxis (original) (raw)
West, A. H. & Stock, A. M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci.26, 369–376 (2001). A good review of the biochemical and structural aspects of chemotaxis and other two-component signalling systems. CASPubMed Google Scholar
Maeda, T., Wurglermurphy, S. M. & Saito, H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature369, 242–245 (1994). CASPubMed Google Scholar
Nagahashi, S. et al. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology144, 425–432 (1998). CASPubMed Google Scholar
Schuster, S. C., Noegel, A. A., Oehme, F., Gerisch, G. & Simon, M. I. The hybrid histidine kinase DokA is part of the osmotic response system of Dictyostelium. EMBO J.15, 3880–3889 (1996). CASPubMedPubMed Central Google Scholar
Wilkinson, J. Q., Lanahan, M. B., Yen, H. C., Giovannoni, J. J. & Klee, H. J. An ethylene-inducible component of signal transduction encoded by never-ripe. Science270, 1807–1809 (1995). CASPubMed Google Scholar
Ashby, M. K. Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol. Lett.231, 277–281 (2004). CASPubMed Google Scholar
Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem.69, 183–215 (2000). CASPubMed Google Scholar
Inouye, M. & Dutta, R. Histidine Kinases in Signal Transduction (Academic Press, London, UK, 2003). Google Scholar
Potter, C. A. et al. Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides. J. Mol. Biol.320, 201–213 (2002). CASPubMed Google Scholar
Armitage, J. P. Bacterial tactic responses. Adv. Microb. Physiol.41, 229–289 (1999). CASPubMed Google Scholar
Bren, A. & Eisenbach, M. How signals are heard during bacterial chemotaxis: protein–protein interactions in sensory signal propagation. J. Bacteriol.182, 6865–6873 (2000). CASPubMedPubMed Central Google Scholar
Faguy, D. M. & Jarrell, K. F. A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes. Microbiology145, 279–281 (1999). PubMed Google Scholar
Schnitzer, M. J., Block, S. M., Berg, H. C. & Purcell, E. M. Biology of the Chemotactic Response (Armitage, J. P. & Lackie, J. M. eds) 15–34 (Cambridge Univ. Press, UK, 1990). Google Scholar
Thar, R. & Kühl, M. Bacteria are not too small for spatial sensing of chemical gradients: an experimental evidence. Proc. Natl Acad. Sci. USA100, 5748–5753 (2003). CASPubMedPubMed Central Google Scholar
Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol.182, 2793–2801 (2000). CASPubMedPubMed Central Google Scholar
Armitage, J. P. & Schmitt, R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti — variations on a theme? Microbiology143, 3671–3682 (1997). CASPubMed Google Scholar
Levin, M. D., Morton, F. C., Abouhamad, W. N., Bourret, R. B. & Bray, D. Origins of individual swimming behavior in bacteria. Biophys. J.74, 175–181 (1998). CASPubMedPubMed Central Google Scholar
Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature397, 168–171 (1999). A mathematical consideration of the processes of adaptation and robustness in the bacterial chemotaxis pathway. CASPubMed Google Scholar
Kim, S. H., Wang, W. R. & Kim, K. K. Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity. Proc. Natl Acad. Sci. USA99, 11611–11615 (2002). CASPubMedPubMed Central Google Scholar
Sourjik, V. & Berg, H. C. Functional interactions between receptors in bacterial chemotaxis. Nature428, 437–441 (2004). CASPubMed Google Scholar
Sourjik, V. & Berg, H. C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci. USA99, 123–127 (2002). References 21 and 22 use fluorescence resonance energy transfer to assay the interactions between chemoreceptors inE. coliand between CheY–P and CheZ to explain sensitivity and gain in the chemotaxis pathway. CASPubMed Google Scholar
Kim, C., Jackson, M., Lux, R. & Khan, S. Determinants of chemotactic signal amplification in Escherichia coli. J. Mol. Biol.307, 119–135 (2001). CASPubMed Google Scholar
Hess, J. F., Oosawa, K., Kaplan, N. & Simon, M. I. Phosphorylation of three proteins in the signalling pathway of bacterial chemotaxis. Cell53, 79–87 (1988). An early report showing that the phosphorylation of chemotaxis proteins is a mechanism for signal transduction. CASPubMed Google Scholar
Anand, G. S., Goudreau, P. N. & Stock, A. M. Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. Biochemistry37, 14038–14047 (1998). CASPubMed Google Scholar
Welch, M., Oosawa, K., Aizawa, S. -I. & Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl Acad. Sci. USA90, 8787–8791 (1993). CASPubMedPubMed Central Google Scholar
Toker, A. S. & Macnab, R. M. Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J. Mol. Biol.273, 623–634 (1997). CASPubMed Google Scholar
McEvoy, M. M., Bren, A., Eisenbach, M. & Dahlquist, F. W. Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein FliM. J. Mol. Biol.289, 1423–1433 (1999). CASPubMed Google Scholar
Sourjik, V. & Berg, H. C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA99, 12669–12674 (2002). CASPubMedPubMed Central Google Scholar
Morgan, D. G., Baumgartner, J. B. & Hazelbauer, G. L. Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide range of bacterial species. J. Bacteriol.175, 133–140 (1993). CASPubMedPubMed Central Google Scholar
Falke, J. J. & Hazelbauer, G. L. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci.26, 257–265 (2001). CASPubMedPubMed Central Google Scholar
Yeh, J. I. et al. High resolution structures of the ligand binding domain of the wild type aspartate receptor. J. Mol. Biol.262, 186–201 (1996). CASPubMed Google Scholar
Kim, K. K., Yokota, H. & Kim, S. H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature400, 787–792 (1999). CASPubMed Google Scholar
Milburn, M. V. et al. Structural changes in a transmembrane receptor — crystal structures of the ligand domain of aspartate chemotaxis receptor with and without aspartate. Biochemistry31, 2192 (1992). Google Scholar
Mowbray, S. L. & Koshland, D. E. Jr. Additive and independent responses to a single receptor: aspartate and maltose stimuli on the Tar protein. Cell50, 171–180 (1987). CASPubMed Google Scholar
Beel, B. D. & Hazelbauer, G. L. Substitutions in the periplasmic domain of low-abundance chemoreceptor Trg that induce or reduce transmembrane signaling: kinase activation and context effects. J. Bacteriol.183, 671–679 (2001). CASPubMedPubMed Central Google Scholar
Isaac, B., Gallagher, G. J., Balazs, Y. S. & Thompson, L. K. Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor. Biochemistry41, 3025–3036 (2002). CASPubMed Google Scholar
Murphy, O. J., Kovacs, F. A., Sicard, E. L. & Thompson, L. K. Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry40, 1358–1366 (2001). CASPubMed Google Scholar
Ottemann, K. M., Xiao, W., Shin, Y. K. & Koshland, D. E. Jr. A piston model for transmembrane signaling of the aspartate receptor. Science285, 1751–1754 (1999). CASPubMed Google Scholar
Ames, P. & Parkinson, J. S. Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal output. Cell55, 817–826 (1988). CASPubMed Google Scholar
Surette, M. G. & Stock, J. B. Role of α-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J. Biol. Chem.271, 17966–17973 (1996). CASPubMed Google Scholar
Storch, K. F., Rudolph, J. & Oesterhelt, D. Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. EMBO J.18, 1146–1158 (1999). CASPubMedPubMed Central Google Scholar
Wadhams, G. H. et al. TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm. Mol. Microbiol.46, 1211–1221 (2002). CASPubMed Google Scholar
Nishiyama, S., Maruyama, I. N., Homma, M. & Kawagishi, I. Inversion of thermosensing property of the bacterial receptor Tar by mutations in the second transmembrane region. J. Mol. Biol.286, 1275–1284 (1999). CASPubMed Google Scholar
Appleman, J. A., Chen, L. L. & Stewart, V. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J. Bacteriol.185, 4872–4882 (2003). CASPubMedPubMed Central Google Scholar
Aravind, L. & Ponting, C. P. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol. Lett.176, 111–116 (1999). CASPubMed Google Scholar
Weis, R. M. & Koshland, D. E. Jr. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid. Proc. Natl Acad. Sci. USA85, 83–87 (1988). CASPubMedPubMed Central Google Scholar
Kehry, M. R., Bond, M. W., Hunkapiller, M. W. & Dahlquist, F. W. Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc. Natl Acad. Sci. USA80, 3599–3603 (1983). CASPubMedPubMed Central Google Scholar
Wu, J. G., Li, J. Y., Li, G. Y., Long, D. G. & Weis, R. M. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry35, 4984–4993 (1996). CASPubMed Google Scholar
Barnakov, A. N., Barnakova, L. A. & Hazelbauer, G. L. Comparison in vitro of a high- and a low-abundance chemoreceptor of Escherichia coli: similar kinase activation but different methyl-accepting activities. J. Bacteriol.180, 6713–6718 (1998). CASPubMedPubMed Central Google Scholar
Le Moual, H., Quang, T. & Koshland, D. E. Jr. Methylation of the Escherichia coli chemotaxis receptors: intra- and interdimer mechanisms. Biochemistry36, 13441–13448 (1997). CASPubMed Google Scholar
Maddock, J. R. & Shapiro, L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science259, 1717–1723 (1993). The use of immunogold electron microscopy to show for the first time that chemoreceptors cluster at the poles of bacterial cells. CASPubMed Google Scholar
Wadhams, G. H., Martin, A. C. & Armitage, J. P. Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. Mol. Microbiol.36, 1222–1233 (2000). CASPubMed Google Scholar
Thomason, P. A., Wolanin, P. M. & Stock, J. B. Signal transduction: receptor clusters as information processing arrays. Curr. Biol.12, R399–R401 (2002). CASPubMed Google Scholar
Sourjik, V. & Berg, H. C. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol. Microbiol.37, 740–751 (2000). CASPubMed Google Scholar
Martin, A. C., Wadhams, G. H. & Armitage, J. P. The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides. Mol. Microbiol.40, 1261–1272 (2001). CASPubMed Google Scholar
Homma, M., Shiomi, D., Homma, M. & Kawagishi, I. Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole. Proc. Natl Acad. Sci. USA101, 3462–3467 (2004). CASPubMedPubMed Central Google Scholar
Studdert, C. A. & Parkinson, J. S. Crosslinking snapshots of bacterial chemoreceptor squads. Proc. Natl Acad. Sci. USA101, 2117–2122 (2004). CASPubMedPubMed Central Google Scholar
Wolanin, P. M. & Stock, J. B. Bacterial chemosensing: cooperative molecular logic. Curr. Biol.14, R486–R487 (2004). CASPubMed Google Scholar
Bray, D., Levin, M. D. & Morton, F. C. Receptor clustering as a cellular mechanism to control sensitivity. Nature393, 85–88 (1998). One of the first papers to propose that chemoreceptor clustering could explain the sensitivity and gain in the chemotaxis pathway. CASPubMed Google Scholar
Levit, M. N., Grebe, T. W. & Stock, J. B. Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis. J. Biol. Chem.277, 36748–36754 (2002). CASPubMed Google Scholar
Lamanna, A. C. et al. Conserved amplification of chemotactic responses through chemoreceptor interactions. J. Bacteriol.184, 4981–4987 (2002). CASPubMedPubMed Central Google Scholar
Ames, P., Studdert, C. A., Reiser, R. H. & Parkinson, J. S. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl Acad. Sci. USA99, 7060–7065 (2002). CASPubMedPubMed Central Google Scholar
Li, M. & Hazelbauer, G. L. Cellular stoichiometries of the components of the chemotaxis signaling complex. J. Bacteriol186, 3687–3694 (2004). A quantitative western-blot analysis of chemotaxis proteins in cells that were grown under different growth conditions, which showed that although the absolute numbers of the signalling components vary, the stoichiometry between them remains relatively constant. CASPubMedPubMed Central Google Scholar
Shimizu, T. S. et al. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nature Cell Biol.2, 792–796 (2000). CASPubMed Google Scholar
Rebbapragada, A. et al. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc. Natl Acad. Sci. USA94, 10541–10546 (1997). CASPubMedPubMed Central Google Scholar
Bibikov, S. I., Barnes, L. A., Gitin, Y. & Parkinson, J. S. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc. Natl Acad. Sci. USA97, 5830–5835 (2000). CASPubMedPubMed Central Google Scholar
Fu, R., Wall, J. D. & Voordouw, G. DcrA, a c-type heme-containing methyl-accepting chemotaxis protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J. Bacteriol.176, 344–350 (1994). CASPubMedPubMed Central Google Scholar
Hou, S. et al. Myoglobin-like aerotaxis transducers in Archaea and bacteria. Nature403, 540–544 (2000). CASPubMed Google Scholar
Lux, R. et al. Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol. Biol. Cell10, 1133–1146 (1999). CASPubMedPubMed Central Google Scholar
Boukhvalova, M., VanBruggen, R. & Stewart, R. C. CheA kinase and chemoreceptor interaction surfaces on CheW. J. Biol. Chem.277, 23596–23603 (2002). CASPubMed Google Scholar
Griswold, I. J. et al. The solution structure and interactions of CheW from Thermotoga maritima. Nature Struct. Biol.9, 121–125 (2002). CASPubMed Google Scholar
Shah, D. S. et al. Identification of a fourth cheY gene in Rhodobacter sphaeroides and interspecies interaction within the bacterial chemotaxis signal transduction pathway. Mol. Microbiol.35, 101–112 (2000). CASPubMed Google Scholar
Hamblin, P. A., Bourne, N. A. & Armitage, J. P. Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli. Mol. Microbiol.24, 41–51 (1997). CASPubMed Google Scholar
Morrison, T. B. & Parkinson, J. S. A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling. J. Bacteriol.179, 5543–5550 (1997). CASPubMedPubMed Central Google Scholar
Mourey, L. et al. Crystal structure of the CheA histidine phosphotransfer domain that mediates response regulator phosphorylation in bacterial chemotaxis. J. Biol. Chem.276, 31074–31082 (2001). CASPubMed Google Scholar
Bilwes, A. M., Alex, L. A., Crane, B. R. & Simon, M. I. Structure of CheA, a signal-transducing histidine kinase. Cell96, 131–141 (1999). CASPubMed Google Scholar
Bourret, R. B., Davagnino, J. & Simon, M. I. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J. Bacteriol.175, 2097–2101 (1993). CASPubMedPubMed Central Google Scholar
Levit, M. N., Liu, Y. & Stock, J. B. Mechanism of CheA protein kinase activation in receptor signaling complexes. Biochemistry38, 6651–6658 (1999). CASPubMed Google Scholar
Li, J. Y., Swanson, R. V., Simon, M. I. & Weis, R. M. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry34, 14626–14636 (1995). CASPubMed Google Scholar
Welch, M., Chinardet, N., Mourey, L., Birck, C. & Samama, J. P. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nature Struct. Biol.5, 25–29 (1998). CASPubMed Google Scholar
Stewart, R. C., Jahreis, K. & Parkinson, J. S. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry39, 13157–13165 (2000). CASPubMed Google Scholar
Hess, J. F., Bourret, R. B. & Simon, M. I. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature336, 139–143 (1988). CASPubMed Google Scholar
Halkides, C. J. et al. The 1.9 Å resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Biochemistry39, 5280–5286 (2000). CASPubMed Google Scholar
Lee, S. Y. et al. Crystal structure of activated CheY — comparison with other activated receiver domains. J. Biol. Chem.276, 16425–16431 (2001). CASPubMed Google Scholar
Cho, H. S. et al. NMR structure of activated CheY. J. Mol. Biol.297, 543–551 (2000). CASPubMed Google Scholar
Bren, A. & Eisenbach, M. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J. Mol. Biol.278, 507–514 (1998). CASPubMed Google Scholar
Sagi, Y., Khan, S. & Eisenbach, M. Binding of the chemotaxis response regulator CheY to the isolated, intact switch complex of the bacterial flagellar motor — lack of cooperativity. J. Biol. Chem.278, 25867–25871 (2003). Showed that CheY–P binds to the switch component of the bacterial flagellar motor in a non-cooperative manner, which indicates that any amplification that occurs at the motor occurs after CheY–P binding. CASPubMed Google Scholar
Lee, S. Y. et al. Crystal structure of an activated response regulator bound to its target. Nature Struct. Biol.8, 52–56 (2001). CASPubMed Google Scholar
Da Re, S. S., Deville-Bonne, D., Tolstykh, T., Veron, M. & Stock, J. B. Kinetics of CheY phosphorylation by small molecule phosphodonors. FEBS Lett.457, 323–326 (1999). CASPubMed Google Scholar
Barak, R. & Eisenbach, M. Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. Mol. Microbiol.40, 731–743 (2001). CASPubMed Google Scholar
Blat, Y. & Eisenbach, M. Oligomerization of the phosphatase CheZ upon interaction with the phosphorylated form of CheY — the signal protein of bacterial chemotaxis. J. Biol. Chem.271, 1226–1231 (1996). CASPubMed Google Scholar
Blat, Y. & Eisenbach, M. Mutants with defective phosphatase activity show no phosphorylation-dependent oligomerization of CheZ. The phosphatase of bacterial chemotaxis. J. Biol. Chem.271, 1232–1236 (1996). CASPubMed Google Scholar
Zhao, R., Collins, E. J., Bourret, R. B. & Silversmith, R. E. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nature Struct. Biol.9, 570–575 (2002). CASPubMed Google Scholar
Sourjik, V. & Schmitt, R. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry37, 2327–2335 (1998). Identified an alternative signal-termination mechanism, which uses a phosphate sink in a bacterial species that lacks CheZ. CASPubMed Google Scholar
Karatan, E., Saulmon, M. M., Bunn, M. W. & Ordal, G. W. Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J. Biol. Chem.276, 43618–43626 (2001). CASPubMed Google Scholar
Pittman, M. S., Goodwin, M. & Kelly, D. J. Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology147, 2493–2504 (2001). CASPubMed Google Scholar
Jiang, Z. Y. & Bauer, C. E. Analysis of a chemotaxis operon from Rhodospirillum centenum. J. Bacteriol.179, 5712–5719 (1997). CASPubMedPubMed Central Google Scholar
Porter, S. L. & Armitage, J. P. Phosphotransfer in Rhodobacter sphaeroides chemotaxis. J. Mol. Biol.324, 35–45 (2002). Showed that different CheA proteins fromR. sphaeroidesdifferentially phosphorylate specific RRs. CASPubMed Google Scholar
Springer, W. R. & Koshland, D. E. Jr. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl Acad. Sci. USA74, 533–537 (1977). CASPubMedPubMed Central Google Scholar
Kehry, M. R. & Dahlquist, F. W. Adaptation in bacterial chemotaxis: CheB-dependent modification permits additional methylations of sensory transducing proteins. Cell29, 761–772 (1982). CASPubMed Google Scholar
Kehry, M. R., Doak, T. G. & Dahlquist, F. W. Sensory adaptation in bacterial chemotaxis — regulation of demethylation. J. Bacteriol.163, 983–990 (1985). CASPubMedPubMed Central Google Scholar
Djordjevic, S. & Stock, A. M. Chemotaxis receptor recognition by protein methyltransferase CheR. Nature Struct. Biol.5, 446–450 (1998). CASPubMed Google Scholar
Djordjevic, S. & Stock, A. M. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding _S_-adenosylmethionine. Structure5, 545–558 (1997). CASPubMed Google Scholar
Shiomi, D., Zhulin, I. B., Homma, M. & Kawagishi, I. Dual recognition of the bacterial chemoreceptor by chemotaxis-specific domains of the CheR methyltransferase. J. Biol. Chem.277, 42325–42333 (2002). CASPubMed Google Scholar
Djordjevic, S., Goudreau, P. N., Xu, Q., Stock, A. M. & West, A. H. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. Proc. Natl Acad. Sci. USA95, 1381–1386 (1998). CASPubMedPubMed Central Google Scholar
Anand, G. S. & Stock, A. M. Kinetic basis for the stimulatory effect of phosphorylation on the methylesterase activity of CheB. Biochemistry41, 6752–6760 (2002). CASPubMed Google Scholar
Levit, M. N., Liu, Y. & Stock, J. B. Stimulus response coupling in bacterial chemotaxis: receptor dimers in signalling arrays. Mol. Microbiol.30, 459–466 (1998). CASPubMed Google Scholar
Szurmant, H. & Ordal, G. W. Diversity in chemotaxis mechanisms among the bacteria and Archaea. Microbiol. Mol. Biol. Rev.68, 301–319 (2004). CASPubMedPubMed Central Google Scholar
Bischoff, D. S., Bourret, R. B., Kirsch, M. L. & Ordal, G. W. Purification and characterization of Bacillus subtilis CheY. Biochemistry32, 9256–9261 (1993). CASPubMed Google Scholar
Zimmer, M. A., Tiu, J., Collins, M. A. & Ordal, G. W. Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J. Biol. Chemistry275, 24264–24272 (2000). CAS Google Scholar
Nordmann, B. et al. Identification of volatile forms of methyl groups released by Halobacterium salinarium. J. Biol. Chem.269, 16449–16454 (1994). CASPubMed Google Scholar
Thoelke, M. S., Kirby, J. R. & Ordal, G. W. Novel methyl transfer during chemotaxis in Bacillus subtilis. Biochemistry28, 5585–5589 (1989). CASPubMed Google Scholar
Kirby, J. R., Kristich, C. J., Feinberg, S. L. & Ordal, G. W. Methanol production during chemotaxis to amino acids in Bacillus subtilis. Mol. Microbiol.24, 869–878 (1997). CASPubMed Google Scholar
Kirsch, M. L., Peters, P. D., Hanlon, D. W., Kirby, J. R. & Ordal, G. W. Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis. J. Biol. Chem.268, 18610–18616 (1993). CASPubMed Google Scholar
Rosario, M. M. & Ordal, G. W. CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. Mol. Microbiol.21, 511–518 (1996). CASPubMed Google Scholar
Szurmant, H., Muff, T. J. & Ordal, G. W. Bacillus subtilis CheC and FliY are members of a novel class of CheY–P-hydrolyzing proteins in the chemotactic signal transduction cascade. J. Biol. Chem.279, 21787–21792 (2004). Identified roles for extra chemotaxis proteins inB. subtilis. CASPubMed Google Scholar
Porter, S. L., Warren, A. V., Martin, A. C. & Armitage, J. P. The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol. Microbiol.46, 1081–1094 (2002). CASPubMed Google Scholar
Wadhams, G. H., Warren, A. V., Martin, A. C. & Armitage, J. P. Targeting of two signal transduction pathways to different regions of the bacterial cell. Mol. Microbiol.50, 763–770 (2003). Showed for the first time that the components of two chemotaxis pathways are physically separated within a bacterial cell. CASPubMed Google Scholar
Porter, S. L. & Armitage, J. P. Chemotaxis in Rhodobacter sphaeroides requires an atypical histidine protein kinase. J. Biol. Chem. 12 Oct 2004 (doi:10.1074/jbc.M408855200).
O'Toole, R. et al. The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J. Bacteriol.181, 4308–4317 (1999). CASPubMedPubMed Central Google Scholar
Kim, H. & Farrand, S. K. Opine catabolic loci from Agrobacterium plasmids confer chemotaxis to their cognate substrates. Mol. Plant Microbe Interact.11, 131–143 (1998). CASPubMed Google Scholar
Zhu, J. & Mekalanos, J. J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell5, 647–656 (2003). CASPubMed Google Scholar
Butler, S. M. & Camilli, A. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl Acad. Sci. USA101, 5018–5023 (2004). CASPubMedPubMed Central Google Scholar
Pandya, S., Iyer, P., Gaitonde, V., Parekh, T. & Desai, A. Chemotaxis of Rhizobium SP.S2 towards Cajanus cajan root exudate and its major components. Curr. Microbiol.38, 205–209 (1999). CASPubMed Google Scholar
Millikan, D. S. & Ruby, E. G. FlrA, a σ54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol.185, 3547–3557 (2003). CASPubMedPubMed Central Google Scholar
Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol.56, 187–209 (2002). CASPubMed Google Scholar
Costerton, J. W. Anaerobic biofilm infections in cystic fibrosis. Mol. Cell10, 699–700 (2002). CASPubMed Google Scholar
Taga, M. E. & Bassler, B. L. Chemical communication among bacteria. Proc. Natl Acad. Sci. USA100, 14549–14554 (2003). CASPubMedPubMed Central Google Scholar
Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem.72, 19–54 (2003). A comprehensive review of the mechanism of rotation of the bacterial flagellar motor. CASPubMed Google Scholar
Atsumi, T., McCarter, L. & Imae, Y. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature355, 182–184 (1992). CASPubMed Google Scholar
Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol.56, 289–314 (2002). CASPubMed Google Scholar
Kaiser, D. Coupling cell movement to multicellular development in Myxobacteria. Nature Rev. Microbiol.1, 45–54 (2003). CAS Google Scholar
McBride, M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol.55, 49–75 (2001). CASPubMed Google Scholar
Armitage, J. P., Pitta, T. P., Vigeant, M. A., Packer, H. L. & Ford, R. M. Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J. Bacteriol.181, 4825–4833 (1999). CASPubMedPubMed Central Google Scholar
Macnab, R. M. How bacteria assemble flagella. Annu. Rev. Microbiol.57, 77–100 (2003). A review of the process of bacterial flagella assembly. CASPubMed Google Scholar
Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev.62, 379–433 (1998). CASPubMedPubMed Central Google Scholar
Oster, G. & Wang, H. Rotary protein motors. Trends Cell Biol.13, 114–121 (2003). CASPubMed Google Scholar
Shi, W., Kohler, T. & Zusman, D. R. Chemotaxis plays a role in the social behaviour of Myxococcus xanthus. Mol. Microbiol.9, 601–611 (1993). CASPubMed Google Scholar
Shi, W. Y., Yang, Z. M., Sun, H., Lancero, H. & Tong, L. M. Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus. FEMS Microbiol. Lett.192, 211–215 (2000). CASPubMed Google Scholar
Kirby, J. R. & Zusman, D. R. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl Acad. Sci. USA100, 2008–2013 (2003). Provides an example of an operon that encodes chemotaxis-protein homologues that are not involved in the regulation of bacterial motility. CASPubMedPubMed Central Google Scholar
Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph.14, 51–61 (1996). CASPubMed Google Scholar
Bray, D. Genomics: molecular prodigality. Science299, 1189–1190 (2003). CASPubMed Google Scholar