Stuurman, N., Heins, S. & Aebi, U. Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol.122, 42–66 (1998). CASPubMed Google Scholar
Schirmer, E. C., Florens, L., Guan, T., Yates, J. R. & Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science531, 1380–1382 (2003). Google Scholar
Weber, K., Plessmann, U. & Traub, P. Maturation of nuclear lamin A involves a specific carboxy-terminal trimming, which removes the polyisoprenylation site from the precursor; implications for the structure of the nuclear lamina. FEBS Lett.257, 411–414 (1989). CASPubMed Google Scholar
Leung, G. K. et al. Biochemical studies of _Zmpste24_-deficient mice. J. Biol. Chem.276, 29051–29058 (2001). CASPubMed Google Scholar
Herrmann, H. & Foisner, R. Intermediate filaments: novel assembly models and exciting new functions for nuclear lamins. Cell. Mol. Life Sci.60, 1607–1612 (2003). CASPubMed Google Scholar
Moir, R. D., Yoon, M., Khuon, S. & Goldman, R. D. Nuclear lamins A and B1. Different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol.151, 1155–1168 (2000). CASPubMedPubMed Central Google Scholar
Karabinos, A., Schunemann, J., Meyer, M., Aebi, U. & Weber, K. The single nuclear lamin of Caenorhabditis elegans forms in vitro stable intermediate filaments and paracrystals with a reduced axial periodicity. J. Mol. Biol.325, 241–247 (2003). The first study showing that lamin can form 10-nm filamentsin vitro, similar to cytoplasmic intermediate filaments. CASPubMed Google Scholar
Aebi, U., Cohn, J., Buhle, L. & Gerace, L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature323, 560–564 (1986). CASPubMed Google Scholar
Gruenbaum Y. et al. The nuclear lamina and its functions in the nucleus. Int. Rev. Cyt.226, 1–62 (2003). CAS Google Scholar
Zastrow, M. S., Vlcek, S. & Wilson, K. L. Proteins that bind A-type lamins: integrating isolated clues. J. Cell Sci.117, 979–987 (2004). CASPubMed Google Scholar
Liu, J. et al. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell11, 3937–3947 (2000). CASPubMedPubMed Central Google Scholar
Liu, J. et al. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in C. elegans. Proc. Natl Acad. Sci. USA100, 4598–4603 (2003). LEM-domain proteins have redundant functions in regulating mitosis and chromatin organization. This functional overlap might explain why loss of emerin, which is expressed in nearly all tissues, has no phenotype inC. elegans, and affects only three human tissues. CASPubMedPubMed Central Google Scholar
Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol.147, 913–920 (1999). CASPubMedPubMed Central Google Scholar
Guillemin, K., Williams, T. & Krasnow, M. A. A nuclear lamin is required for cytoplasmic organization and egg polarity in Drosophila. Nature Cell Biol.3, 848–851 (2001). CASPubMed Google Scholar
Schirmer, E. C., Guan, T. & Gerace, L. Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization. J. Cell Biol.153, 479–490 (2001). CASPubMedPubMed Central Google Scholar
Starr, D. A. et al. unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development128, 5039–5050 (2001). CASPubMed Google Scholar
Starr, D. A. & Han, M. Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science11, 406–409 (2002). Evidence that theC. elegansnesprin homologue, ANC-1, is localized in the ONM and anchors the nucleus by binding both UNC-84 (at the nuclear envelope) and actin (in the cytoplasm). Google Scholar
Lopez-Soler, R. I., Moir, R. D., Spann, T. P., Stick, R. & Goldman, R. D. A role for nuclear lamins in nuclear envelope assembly. J. Cell Biol.154, 61–70 (2001). CASPubMedPubMed Central Google Scholar
Spann, T. P., Moir, R. D., Goldman, A. E., Stick, R. & Goldman, R. D. Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J. Cell Biol.136, 1201–1212 (1997). CASPubMedPubMed Central Google Scholar
Spann, T. P., Goldman, A. E., Wang, C., Huang, S. & Goldman, R. D. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J. Cell Biol.156, 603–608 (2002). CASPubMedPubMed Central Google Scholar
Lee, K. K. et al. Lamin-dependent localization of UNC-84, a protein required for nuclear migration in C. elegans. Mol. Biol. Cell13, 892–901 (2002). CASPubMedPubMed Central Google Scholar
Malone, C. J. et al. The C. elegans Hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus. Cell115, 825–836 (2003). Evidence that ZYG-12 homodimers attachC. eleganscentrosomes to the outer nuclear membrane, and to the nuclear lamina through direct or indirect binding to SUN1/matefin, an inner-nuclear-membrane protein. CASPubMed Google Scholar
Zhen, Y. Y., Libotte, T., Munck, M., Noegel, A. A. & Korenbaum, E. NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J. Cell Sci.115, 3207–3222 (2002). CASPubMed Google Scholar
Croft, J. A. et al. Differences in the localization and morphology of chromosomes in the human nucleus. J. Cell Biol.145, 1119–1131 (1999). CASPubMedPubMed Central Google Scholar
Nikolova, V. et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest.113, 357–369 (2004). CASPubMedPubMed Central Google Scholar
Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA101, 8963–8968 (2004). Fibroblasts from Hutchinson–Gilford progeria patients show dramatic changes in nuclear structure, loss of peripheral heterochromatin and changes in nuclear-envelope composition. CASPubMedPubMed Central Google Scholar
Waterham, H. R. et al. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3β-hydroxysterol Δ14-reductase deficiency due to mutations in the Lamin B receptor gene. Am. J. Hum. Genet.72, 1013–1017 (2003). CASPubMedPubMed Central Google Scholar
Holmer, L. & Worman, H. J. Inner nuclear membrane proteins: functions and targeting. Cell. Mol. Life Sci.58, 1741–1747 (2001). CASPubMed Google Scholar
Hoffmann, K. et al. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger–Huet anomaly). Nature Genet.31, 410–414 (2002). Evidence that LBR influences chromatin organization and nuclear shape during white-blood-cell differentiation. CASPubMed Google Scholar
Lin, F. et al. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J. Biol. Chem.275, 4840–4847 (2000). CASPubMed Google Scholar
Lee, K. K. & Wilson, K. L. The Nuclear Envelope (eds Evans, D. E., Hutchinson, C. & Bryant, J.) 331–341 (BIOS Scientific Publishers, Abingdon, UK, 2004). Google Scholar
Shumaker, D. K., Lee, K. K., Tanhehco, Y. C., Craigie, R. & Wilson, K. L. LAP2 binds to BAF–DNA complexes: requirement for the LEM domain and modulation by variable regions. EMBO J.20, 1754–1764 (2001). CASPubMedPubMed Central Google Scholar
Lee, K. K. et al. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci.114, 4567–4573 (2001). CASPubMed Google Scholar
Dechat, T. et al. Lamina-associated polypeptide 2α binds intranuclear A-type lamins. J. Cell Sci.19, 3473–3484 (2000). Google Scholar
Goldberg, M. et al. Interactions among Drosophila nuclear envelope proteins lamin, otefin, and YA. Mol. Cell. Biol.18, 4315–4323 (1998). CASPubMedPubMed Central Google Scholar
Wagner, N., Schmitt, J. & Krohne, G. Two novel LEM-domain proteins are splice products of the annotated Drosophila melanogaster gene CG9424 (Bocksbeutel). Euro. J. Cell Biol.82, 605–616 (2004). CAS Google Scholar
Furukawa, K. LAP2 binding protein 1 (L2BP1/BAF) is a candidate mediator of LAP2- chromatin interaction. J. Cell Sci.112, 2485–2492 (1999). CASPubMed Google Scholar
Segura-Totten, M. & Wilson, K. L. BAF: roles in chromatin, nuclear structure and retrovirus integration. Trends Cell Biol.14, 261–266 (2004). CASPubMed Google Scholar
Zheng, R. et al. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc. Natl Acad. Sci. USA97, 8997–9002 (2000). CASPubMedPubMed Central Google Scholar
Wang, X. et al. Barrier to autointegration factor interacts with the cone-rod homeobox and represses its transactivation function. J. Biol. Chem.277, 43288–43300 (2002). CASPubMed Google Scholar
Furukawa, K. et al. Barrier-to-autointegration factor plays crucial roles in cell cycle progression and nuclear organization in Drosophila. J. Cell Sci.116, 3811–3823 (2003). CASPubMed Google Scholar
Vlcek, S., Korbei, B. & Foisner, R. Distinct functions of LAP2α's unique C-terminus in cell proliferation and nuclear assembly. J. Biol. Chem.277, 18898–18907 (2002). CASPubMed Google Scholar
Johnson et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteasomal degradation. Proc. Natl Acad. Sci. USA101, 9677–9682 (2004). CASPubMedPubMed Central Google Scholar
Haraguchi, T. et al. BAF is required for emerin assembly into the reforming nuclear envelope. J. Cell Sci.114, 4575–4585 (2001). CASPubMed Google Scholar
Cohen, M., Lee, K., Wilson, K. W. & Gruenbaum, Y. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem. Sci26, 41–47 (2001). CASPubMed Google Scholar
Nili, E. et al. Nuclear membrane protein, LAP2β, mediates transcriptional repression alone and together with its binding partner GCL (germ cell-less). J. Cell Sci.114, 3297–3307 (2001). CASPubMed Google Scholar
Jongens, T. A., Ackerman, L. D., Swedlow, J. R., Jan, L. Y. & Jan, Y. N. Germ cell-less encodes a cell type-specific nuclear pore-associated protein and functions early in the germ-cell specification pathway of Drosophila. Genes Dev.8, 2123–2136 (1994). CASPubMed Google Scholar
de la Luna, S., Allen, K. E., Mason, S. L. & La Thangue, N. B. Integration of a growth-suppressing BTB/POZ domain protein with the DP component of the E2F transcription factor. EMBO J.18, 212–228 (1999). CASPubMedPubMed Central Google Scholar
Martins, S., Eikvar, S., Furukawa, K. & Collas, P. HA95 and LAP2β mediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication. J. Cell Biol.160, 177–188. (2003). CASPubMedPubMed Central Google Scholar
Holaska, J. M., Lee, K. K., Kowalski, A. K. & Wilson, K. L. Transcriptional repressor germ cell-less (GCL) and barrier-to-autointegration factor (BAF) compete for binding to emerin in vitro. J. Biol. Chem.278, 6969–6975 (2003). CASPubMed Google Scholar
Bengtsson, L. & Wilson, K. L. Multiple and surprising new functions for emerin, a nuclear membrane protein. Curr. Opin. Cell Biol.16, 73–79 (2004). CASPubMed Google Scholar
Haraguchi, T. et al. Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery–Dreifuss muscular dystrophy. Eur. J. Biochem.271, 1035–1045 (2004). CASPubMed Google Scholar
Pederson, T. & Aebi, U. Actin in the nucleus: what form and what for? J. Struct. Biol.140, 3–9 (2002). CASPubMed Google Scholar
Pestic-Dragovich, L. et al. A myosin I isoform in the nucleus. Science290, 337–342 (2000). CASPubMed Google Scholar
Bettinger, B. T., Gilbert, D. M. & Amberg, D. C. Actin up in the nucleus. Nature Rev. Mol. Cell Biol.5, 410–415 (2004). CAS Google Scholar
Sasseville, A. M. & Langelier, Y. In vitro interaction of the carboxy-terminal domain of lamin A with actin. FEBS Lett.425, 485–489 (1998). CASPubMed Google Scholar
Fairley, E. A., Kendrick-Jones, J. & Ellis, J. A. The Emery–Dreifuss muscular dystrophy phenotype arises from aberrant targeting and binding of emerin at the inner nuclear membrane. J. Cell Sci.112, 2571–2582 (1999). CASPubMed Google Scholar
Lattanzi, G. et al. Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts. Biochem. Biophys. Res. Commun.303, 764–770 (2003). CASPubMed Google Scholar
Mattioli, E. et al. Nuclear AKAPs in muscle differentiation: redistribution of PKA in myotubes and regulation of AKAP149 expression by MAPK/ERK pathway. FEBS Lett. (in the press).
Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol.2, E231 (2004). Evidence that emerin caps the pointed end of F-actin and thereby indirectly enhances actin polymerization ratesin vitro. Emerin also affinity-purifies nuclear-enriched αII-spectrin from HeLa-cell nuclear lysates, indicating that emerin anchors a spectrin- and actin-containing cortical network at the NE. PubMedPubMed Central Google Scholar
Luque, C. M. et al. An alternative domain containing a leucine-rich sequence regulates nuclear cytoplasmic localization of protein 4.1R. J. Biol. Chem.278, 2686–2691 (2003). CASPubMed Google Scholar
Sridharan, D., Brown, M., Lambert, W. C., McMahon, L. W. & Lambert, M. W. Nonerythroid αII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J. Cell Sci.116, 823–835 (2003). CASPubMed Google Scholar
Krauss, S. W., Chen, C., Penman, S. & Heald, R. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro. Proc. Natl Acad. Sci. USA100, 10752–10757 (2003). CASPubMedPubMed Central Google Scholar
Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest.113, 370–378 (2004). Evidence thatlmna-null mouse embryo fibroblasts have deformed nuclei, impaired viability under mechanical stress, defective mechanotransduction and attenuated gene-expression responses to mechanical stress via the NFκB signalling pathway. CASPubMedPubMed Central Google Scholar
Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci.15, 4779–4786 (2004). Google Scholar
Osada, S., Ohmori, S. Y. & Taira, M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development130, 1783–1794 (2003). Evidence thatX. laevisMan1 is a neuralizing factor that blocks Bmp signalling by direct binding to Smad proteins. Similar results were reported by Rajuet al. (2003). CASPubMed Google Scholar
ten Dijke, P. & Hill, C. S. New insights into TGF-β-Smad signalling. Trends Biochem. Sci.29, 265–273 (2004). CASPubMed Google Scholar
Nakayama, T., Cui, Y. & Christian, J. L. Regulation of BMP/Dpp signaling during embryonic development. Cell. Mol. Life Sci.57, 943–956 (2000). CASPubMed Google Scholar
Lee, H., Habas, R. & Abate-Shen, C. Msx1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science304, 1675–1678 (2004). CASPubMed Google Scholar
Fainsod, A., Steinbeisser, H. & De Robertis, E. M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J.13, 5015–5025 (1994). CASPubMedPubMed Central Google Scholar
Malone, C. J., Fixsen, W. D., Horvitz, H. R. & Han, M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development126, 3171–3181 (1999). CASPubMed Google Scholar
Hedgecock, E. M. & Thomson, J. N. A gene required for nuclear and mitochondrial attachment in the nematode Caenorhabditis elegans. Cell30, 321–330 (1982). CASPubMed Google Scholar
Hodzic, D. M., Yeater, D. B., Bengtsson, L., Otto, H. & Stahl, P. D. Sun2 is a novel mammalian inner nuclear membrane protein. J. Biol. Chem.279, 25805–25812 (2004). CASPubMed Google Scholar
Fridkin, A. et al. Matefin, a C. elegans germ-line specific SUN-domain nuclear membrane protein, is essential for early embryonic and germ cell development. Proc. Natl Acad. Sci. USA101, 6987–6992 (2004). CASPubMedPubMed Central Google Scholar
Zhang, Q., Ragnauth, C., Greener, J. M., Shanahan, C. M. & Roberts, R. G. The nesprins are giant actin-binding proteins, orthologous to Drosophila muscle protein MSP-300. Genomics80, 473–481 (2002). CASPubMed Google Scholar
Padmakumar, V. C. et al. Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp. Cell Res.295, 330–339 (2004). CASPubMed Google Scholar
Starr, D. A. & Han, M. ANChors away: an actin based mechanism of nuclear positioning. J. Cell Sci.116, 211–216 (2003). CASPubMed Google Scholar
Mislow, M. K. J. et al. Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett.525, 135–140 (2002). CASPubMed Google Scholar
Muchir, A. et al. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res.291, 352–362 (2003). Homozygous-nulllmnafibroblasts were derived from a 30-week-old human fetus that was born prematurely to consanguineous parents. The infant had severe muscle defects and fibrosis, joint contractures and missing diaphragm muscles, and died after birth. The fibroblast nuclei were highly lobulated; lamin B and LAP2β were not detected at the NE; and emerin and nesprin-1α both mislocalized to the ER. CASPubMed Google Scholar
Paddock, S. W. & Albrecht-Buehler, G. Rigidity of the nucleus during nuclear rotation in 3T3 cells. Exp. Cell Res.175, 409–413 (1988). CASPubMed Google Scholar
Gonczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol.147, 135–150 (1999). CASPubMedPubMed Central Google Scholar
Yoder, J. H. & Han, M. Cytoplasmic dynein light intermediate chain is required for discrete aspects of mitosis in Caenorhabditis elegans. Mol. Biol. Cell12, 2921–2933 (2001). CASPubMedPubMed Central Google Scholar
Walenta, J. H., Didier, A. J., Liu, X. & Kramer, H. The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins. J. Cell Biol.152, 923–934 (2001). CASPubMedPubMed Central Google Scholar
Worman, H. J. & Courvalin, J. C. How do mutations in lamins A and C cause disease? J. Clin. Invest.113, 349–351 (2004). CASPubMedPubMed Central Google Scholar
Mounkes, L., Kozlov, S., Burke, B. & Stewart, C. L. The laminopathies: nuclear structure meets disease. Curr. Opin. Genet. Dev.213, 223–230 (2003). Google Scholar
Navarro, C. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganisation and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet.13, 2493–2503 (2004). CASPubMed Google Scholar
Vigouroux, C. et al. Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell Sci.114, 4459–4468 (2001). CASPubMed Google Scholar
Markiewicz, E. et al. Increased solubility of lamins and redistribution of lamin C in X-linked Emery–Dreifuss muscular dystrophy fibroblasts. J. Struct. Biol.140, 241–253 (2002). CASPubMed Google Scholar
Broers, J. L. et al. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet.13, 2567–2580 (2004). CASPubMed Google Scholar
Morris, G. E. in The Nuclear Envelope (eds Evans, D. E., Hutchinson, C. & Bryant, J.) (BIOS Scientific Publishers, Abingdon, UK, 2004). Google Scholar
Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA89, 10114–10118 (1992). CASPubMedPubMed Central Google Scholar
Mukherjee, A. B. & Costello, C. Aneuploidy analysis in fibroblasts of human premature aging syndromes by FISH during in vitro cellular aging. Mech. Ageing Dev.103, 209–222 (1998). CASPubMed Google Scholar
Morris, G. E. The role of the nuclear envelope in Emery–Dreifuss muscular dystrophy. Trends. Mol. Med.7, 572–577 (2001). CASPubMed Google Scholar
Chen, L. et al. LMNA mutations in atypical Werner's syndrome. Lancet362, 440–445 (2003). CASPubMed Google Scholar
Brodsky, G. L. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation101, 473–476 (2000). CASPubMed Google Scholar
Garg, A., Speckman, R. A. & Bowcock, A. M. Multisystem dystrophy syndrome due to novel missense mutations in the amino-terminal head and α-helical rod domains of the lamin A/C gene. Am. J. Med.112, 549–555 (2002). CASPubMed Google Scholar
Zhang, Q. et al. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci.114, 4485–4498 (2001). CASPubMed Google Scholar
Nedivi, E., Fieldust, S., Theill, L. E. & Hevron, D. A set of genes expressed in response to light in the adult cerebral cortex and regulated during development. Proc. Natl Acad. Sci. USA93, 2048–2053 (1996). CASPubMedPubMed Central Google Scholar
Apel, E. D., Lewis, R. M., Grady, R. M. & Sanesi, J. R. Syne-1, a dystrophin-and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J. Biol. Chem.275, 31986–31995 (2000). CASPubMed Google Scholar
Mislow, J. M., Kim, M. S., Davis, D. B. & McNally, E. M. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J. Cell Sci.115, 61–70 (2002). CASPubMed Google Scholar
Rosenberg-Hasson, Y., Renert-Pasca, M. & Volk, T. A Drosophila dystrophin-related protein, MSP-300, is required for embryonic muscle morphogenesis. Mech. Dev.60, 83–94 (1996). CASPubMed Google Scholar
Patterson, K. et al. The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol. Biol. Cell15, 600–610 (2004). CASPubMedPubMed Central Google Scholar
Gough, L. L., Fan, J., Chu, S., Winnick, S. & Beck, K. A. Golgi localization of syne-1. Mol. Biol. Cell14, 2410–2424 (2003). CASPubMedPubMed Central Google Scholar
Vlcek, S., Dechat, T. & Foisner, R. Nuclear envelope and nuclear matrix: interactions and dynamics. Cell. Mol. Life Sci.58, 1758–1765 (2001). CASPubMed Google Scholar
Tsukahara, T., Tsujino, S. & Arahata, K. cDNA microarray analysis of gene expression in fibroblasts of patients with X-linked Emery–Dreifuss muscular dystrophy. Muscle Nerve25, 898–901 (2002). CASPubMed Google Scholar
Shimi, T. et al. Dynamic interaction between BAF and emerin revealed by FRAP, FLIP, and FRET analyses in living HeLa cells. J. Struct. Biol.147, 31–41 (2004). CASPubMed Google Scholar